Propositional
Logic



Big Ideas

* Logic 1s a great knowledge representation
language for many Al problems

* Propositional logic 1s the simple foundation
and fine for some Al problems

* First order logic (FOL) 1s much more
expressive as a KR language and more
commonly used in Al

* There are many variations: horn logic,
higher order logic, three-valued logic,
probabilistic logics, etc.



Propositional logic

- Logical constants: true, false

 Propositional symbols: P, Q.... (atomic sentences)
* Wrapping parentheses: ( ... )

* Sentences are combined by connectives:

and [conjunction]
or [disjunction]
implies [1implication / conditional |

1s equivalent[biconditional]
not [negation]

- Literal: atomic sentence or negated atomic sentence
P P



Examples of PL sentences

(P Q) R

“If 1t 1s hot and humid, then 1t 1s raining”
. Q P

“If 1t 1s humad, then 1t 1s hot™

" Q

“It 1s humid.”

* We’re free to choose better symbols, btw:
Ho = “It 1s hot”

Hu = “It 1s humid”

R = “It 1s raining”



Propositional logic (PL)

* Simple language for showing key i1deas and definitions
* User defines set of propositional symbols, like P and Q

* User defines semantics of each propositional symbol:
- P means “It 1s hot”, Q means “It 1s humid™, etc.

* A sentence (well formed formula) 1s defined as follows:
- A symbol 1s a sentence
- If S 1s a sentence, then S 1s a sentence

- If S is a sentence, then (S) 1s a sentence

- If S and T are sentences, then (S T),(S T),(S T),and (S
< T) are sentences

- A sentence results from a finite number of applications of the
rules



Some terms

* The meaning or semantics of a sentence
determines its interpretation

* G1ven the truth values of all symbols 1n a
sentence, 1t can be “evaluated” to determine its
truth value (True or False)

* A model for a KB 1s a possible world — an
assignment of truth values to propositional
symbols that makes each sentence in the KB
True



Model for a KB

" Letthe KBbe [P Q R,Q P]

* What are the possible models? Consider all possible
assignments of T|F to P, Q and R and check truth tables

- FFF: OK

- gg I\?(If P: it’s hot

- . . 249 .

- FTT: NO Q: }t,s h‘%n?ld
~ TFF: OK R: 1t’s raining
- TFT: OK

- TTF: NO

- TTT: OK

" IfKBis[P Q R,Q P, Q], then the only model 1s
TTT



More terms

A valid sentence or tautology is a sentence that 1s
True under all interpretations, no matter what the
world 1s actually like or what the semantics 1s.
Example: “It’s raining or 1t’s not raining”

 An inconsistent sentence or contradiction 1s a
sentence that 1s False under all interpretations. The
world 1s never like what it describes, as in “It’s
raining and 1it’s not raining.”

P entails Q, written P |= Q, means that whenever P
1s True, so 1s Q. In other words, all models of P are
also models of Q.



Truth tables

Truth tables are used to define logical connectives
and to determine when a complex sentence is true
given the values of the symbols 1n 1t

Truth tables for the five logical connectives

F i - P FAQD Py D P = @ F o 0
Feilse Feil s 1 e Feil e Feil s Trie Triie
Feilse Triic T ric Feil e Trie Triie Feil e
Triie Feil s Feilse Feil e Tre Fellse Feil e
Triic Triic Fiilse Triie Trie Triie Triie

Example of a truth table used for a complex sentence
F H Pv H P HIA-H [PV HIA=H) = P
Feilse Feilse Fiilse Feilse Triie
Feilse Trie Triie Feilse Triie
Triie Feilse Triie Triic Triie
Triie Trie Triie Feilse Triie




On the implies connective: P Q

 Note that  1s a logical connective

*So P Q1s alogical sentence and has a truth
value, 1.e., 1s either true or false

* If we add this sentence to the KB, 1t can be
used by an inference rule, Modes Ponens, to
derive/infer/prove Q 1f P 1s also 1n the KB

* Given a KB where P=True and Q=True, we
can also derive/infer/prove that P Q 1s True



P Q

*Whenis P Q true? Check all that apply
d P=Q=true
d P=Q=false
Jd P=true, Q=false
d P=false, Q=true



P Q

*Whenis P Q true? Check all that apply
' P=Q=true

P=Q=false

Jd P=true, Q=false

J P=false, Q=true

* We can get this from the truth table for

* Note: in FOL 1t’s much harder to prove that
a conditional true.

- Consider proving prime(x)  odd(x)



Inference rules

' Logical inference creates new sentences that
logically follow from a set of sentences (KB)

* An inference rule 1s sound 1f every sentence X it

produces when operating on a KB logically
follows from the KB

-1.e., Inference rule creates no contradictions

 An inference rule 1s complete 1f 1t can produce

every expression that logically follows from (1s
entailed by) the KB.

- Note analogy to complete search algorithms



Sound rules of inference

* Here are some examples of sound rules of inference
* Each can be shown to be sound using a truth table

RULE PREMISE CONCLUSION
Modus Ponens AJA B B
And Introduction A, B A B
And Elimmation A B A
Double Negation A A

Unit Resolution A B, B A
Resolution A B, B CA C



Soundness of modus ponens

A A—B OK?
True True True
True False False
False True True
False False True




Resolution

* Resolution is a valid inference rule producing a new
clause implied by two clauses containing
complementary literals

- A literal 1s an atomic symbol or 1ts negation, 1.¢., P, ~P

* Amazingly, this is the only interference rule you need
to build a sound and complete theorem prover
- Based on proof by contradiction and usually called
resolution refutation

* The resolution rule was discovered by Alan Robinson
(CS, U. of Syracuse) in the mid 60s



Resolution

* A KB 1s actually a set of sentences all of which are
true, 1.€., a conjunction of sentences.

* To use resolution, put KB into conjunctive normal
form (CNF), where each sentence written as a disjunc-
tion of (one or more) literals

Tautologies
Example (A B)o(~A B)
- KB:[P Q,Q R S] (A (B C) <A B) (A O

* KBinCNF: [~P Q,~Q R,~Q §S]

* Resolve KB(1) and KB(2) producing: ~P R (i.e, P R)
* Resolve KB(1) and KB(3) producing: ~P S (ie, P S)
* NewKB: [~P Q,~Q ~R ~S,~P R,~P S]



Soundness of the
resolution inference rule

0 o) y a g =Ny a oy
Feilse Feilse Feilse Fulse Trite Feilze
Feilse Feilse Thie Fulse Trite Triie
Feilse Triie Feilse Triie Fulse Feilze
Triic Feilse Feilse Triie Triie Triic
Trie filse Thie True Trie Trie
Triie Triie Feilse Triie Fulse Triie
Trie Trie Thie True True True

From the rightmost three columns of this truth table, we
can see that

(@ B) B 7@ v)
1s valid (1.e., always true regardless of the truth values
assigned to a, 3 and vy




Proving things

- A proof 1s a sequence of sentences, where each 1s a premise
or 1s derived from earlier sentences in the proof by an
inference rule

* The last sentence is the theorem (also called goal or query)
that we want to prove

* Example for the “weather problem”

1 Hu premise “It’s humid”

2Hu Ho premise “If 1t’s humid, 1t’s hot”

3 Ho modus ponens(1,2)  “It’s hot”

4 (Ho Hu) R premise “If 1t’s hot & humid, it’s raining”
5 Ho Hu and introduction(1,3) “It’s hot and humid”

6 R modus ponens(4,5)  “It’s raining”



Horn sentences

- A Horn sentence or Horn clause has the form:
Pl P2 P3.. Pn Qm where n>=0, m in{0,1}

* Note: a conjunction of 0 or more symbols to left of
and 0-1 symbols to right

* Special cases:
- n=0, m=1: P (assert P is true)
-n>0, m=0: P Q (constraint: both P and Q can’t be true)
- n=0, m=0: (well, there 1s nothing there!)

 Put 1n CNF: each sentence 1s a disjunction of literals

with at most one non-negative literal
Pl P2 P3 ... 135 1R T ———



Significance of Horn logic

* We can also have horn sentences in FOL

* Reasoning with horn clauses 1s much simpler

- Satisfiability of a propositional KB (i.e., finding
values for a symbols that will make it true) 1s NP
complete

- Restricting KB to horn sentences, satisfiability 1s in P

* For this reason, FOL Horn sentences are the basis
for Prolog and Datalog

* What Horn sentences give up are handling, in a
general way, (1) negation and (2) disjunctions



Entailment and derivation

* Entailment: KB |= Q

- Q 1s entailed by KB (set sentences) iff there 1s no
logically possible world where Q 1s false while all
the sentences 1n KB are true

- Or, stated positively, Q 1s entailed by KB 1ff the
conclusion 1s true 1n every logically possible world
in which all the premises in KB are true

* Derivation: KB |- Q
- We can derive Q from KB i1f there’s a proof

consisting of a sequence of valid inference steps
starting from the premises in KB and resulting in Q



Two important properties for inference

Soundness: If KB |- Q then KB |= Q

- If Q 1s derived from KB using a given set of
rules of inference, then Q 1s entailed by KB

- Hence, inference produces only real entailments,
or any sentence that follows deductively from
the premises 1s valid

Completeness: If KB [= Q then KB |- Q

- If Q 1s entailed by KB, then Q can be derived
from KB using the rules of inference

- Hence, inference produces all entailments, or all
valid sentences can be proved from the premises



Problems with
Propositional
Logic




Propositional logic: pro and con

- Advantages

- Simple KR language sufficient for some problems

- Lays the foundation for higher logics (e.g., FOL)

- Reasoning is decidable, though NP complete, and
efficient techniques exist for many problems

* Disadvantages

- Not expressive enough for most problems

- Even when 1t 1s, 1t can very “un-concise”



PL is a weak KR language

* Hard to 1dentify “individuals™ (e.g., Mary, 3)
* Can’t directly talk about properties of individuals
or relations between individuals (e.g., “Bill 1s tall”)

* (Generalizations, patterns, regularities can’t easily
be represented (e.g., “all triangles have 3 sides”)

* First-Order Logic (FOL) 1s expressive enough to
represent this kind of information using relations,
variables and quantifiers, e.g.,

© Every elephant is gray: x (elephant(x) — gray(x))

* There is a white alligator: X (alligator(X) * white(X))



PL Example

* Consider the problem of representing the following
information:

- Every person 1s mortal.
- Confucius 1s a person.
- Confucius 1s mortal.

* How can these sentences be represented so that we
can infer the third sentence from the first two?



PL Example

 In PL we have to create propositional symbols to stand for
all or part of each sentence, e.g.:
P = “person”; Q = “mortal”; R = “Confucius”

 The above 3 sentences are represented as:
P QR PR Q

* The 3rd sentence 1s entailed by the first two, but we need an
explicit symbol, R, to represent an individual, Confucius,
who 1s a member of the classes person and mortal

 Representing other individuals requires introducing separate
symbols for each, with some way to represent the fact that all
individuals who are “people” are also “mortal”



Hunt the Wumpus domain

. . " 74 24 34 74 - Agent
Some atomic propositions: T e
. . = Giitter,
S12 = There is a stench in cell (1,2) OK - Safe square
1.3 \ 2.3 3.3 4.3 P =Fit
B34 = There is a breeze in cell (3,4) " S Coen
W = Wumpus
W22 = Wumpus is in cell (2,2) B 32 42
5
V11 = We’ve visited cell (1,1) oK oK
11 2.1 3.1 41
OK11 = Cell (1,1) is safe. v v :
oK oK

- Some rules:
(R1) Sl11 Wil W12 W21

(R2) S21  WIl W21 W22 W3l
(R3) S12  WIl  WI2 W22  WI3
(R4) S12  WI3 WI2 W22 WIlI

* The lack of variables requires us to give similar
rules for each cell!



After the third move

We can prove that
the Wumpus 1s 1n
(1,3) using the four
rules given.

See R&N section
7.5

1.4 2.4 34 4.4
1.3 2.3 3.3 43
Wi
1.2 2.2 3.2 42
A
5
OK OK
1.1 2.1 3.1 41
B P!
v V
OK OK

[

B
G

Ok

P
5
v
W

= Agent

= Breeze

= Glitter, Gold
= Safe square
= Fit

= Stench

= Visited

" = Wumpus



Proving W13

Apply MP with S11 and RI:
W1l W12 W21

Apply And-Elimination to this, yielding 3 sentences:
WIi1, W12, W21

Apply MP to ~S21 and R2, then apply And-elimination:
W22, W21, W3l

Apply MP to S12 and R4 to obtain:
W13 W12 W22 Wil

Apply Unit resolutionon (W13 W12 W22 Wll)and WII:
W13 W12 W22

Apply Unit Resolution with (W13 W12 W22)and W22:
W13 WI2

Apply UR with (W13 WI12)and WI12:
W13

ZNT'T™



Propositional Wumpus hunter problems

* Lack of variables prevents stating more general
rules

- We need a set of similar rules for each cell
* Change of the KB over time 1s difficult to represent

- Standard technique 1s to index facts with the
time when they’re true

- This means we have a separate KB for every
time point



Propositional logic summary

* Inference 1s the process of deriving new sentences from old

- Sound inference derives true conclusions given true premises
- Complete inference derives all true conclusions from a set of premises

A valid sentence is true in all worlds under all interpretations

* If an implication sentence can be shown to be valid, then—
given its premise—its consequent can be derived

- Different logics make different commitments about what the
world 1s made of and what kind of beliefs we can have

* Propositional logic commits only to the existence of facts that
may or may not be the case in the world being represented

- Simple syntax and semantics suffices to illustrate the process of
inference

- Propositional logic can become impractical, even for very small worlds



| S e

Knowledge Representation
First Order Logic



e Propositional Logic (PL)

A proposition is a statement - which in English is a declarative sentence
and Logic defines the ways of putting symbols together to form
sentences that represent facts. Every proposition is either true or false.

Propositional logic is also called boolean algebra.

Examples: (a) The sky is blue., (b) Snow is cold., (c) 12 * 12=144
Propositional logic : It is fundamental to all logic.
T Propositions are "Sentences”; either true or false but not both.
T A sentence is smallest unit in propositional logic
+ If proposition is true, then truth value is "true"; else “false”

+ Example; Sentence "Grass is green";

Truth value " true”;

nm rr

Proposition yes



s Statement, Variables and Symbols

Statement : A simple statement is one that does not contain any
other statement as a part. A compound statement is one that has

two or more simple statements as parts called components.

Operator or connective : Joins simple statements into compounds,

and joins compounds into larger compounds.

Symbols for connectives

assertion P "p is true”
nagation -p |~ | NOT "p is false"
conjunction ([paq |- |&&| & AND "both p and q are true"
disjunction ([Pvaql|l| |l OR "either p is true,
or q is true,
or both "
implication (p—q|> = if . . then "if p is true, then q is true”
"pimpliesg"
equivalence — = | < if and only if |"p and q are either both true
or both false”




® Truth Value

The truth value of a statement is its truth or falsity ,
P is either true or false,
~p is either true or false,

pvq iseither true or false, and so on.

"T" or "1" means "true". and

"F" or "0" means "false"
Truth table is a convenient way of showing relationship between several
propositions. The truth table for negation, conjunction, disjunction,
implication and equivalence are shown below.

-p|=q|PAq(PVQ|pP=q | P<q| qop

m M- T
m 4 m 4| 2

—
T
F
F
T

- = M =
= M |- | ™
m M| m | -
m -+~
- | =M | -
- T (- | -




RIS 3 weak RR=laRguages""

® Hard to identify “individuals” (e.g., Mary, 3)

® Can’t directly talk about properties of individuals or
relations between individuals (e.g., “Bill is tall”)

® Generalizations, patterns, regularities can’t easily be
represented (e.g., “all triangles have 3 sides™)

® First-Order Logic (FOL) is expressive enough to
represent this kind of information using relations,
variables and quantifiers, e.g.,
® Every elephant is gray; X (elephant(x) — gray(x))
® There is a white alligator:. x (alligator(X) N white(X))



Introduction to FOL/FOPL

® Whereas propositional logic assumes the world contains
facts,

® first-order logic (like natural language) assumes the world
contains

® Objects: people, houses, numbers, colors, baseball games,
wars, ...

® Properties: red, round, large, even, oval...

® Relations: bigger-than, outside, part-of, occurs-after, owns,
visits, comes between, ...

® Functions: father of, best friend, one more than, plus, ...

§)



Syntax of FOL: Basic

EJonstants 1ngJ ohn, 2, Richard,..
® Predicates Brother, >

® Functions  Sqrt, LeftLegOf,...

® Variables  x,v, a, b,...

® Connectives , , , ,

® Equality
® Quantifiers




Examples

® King John and Richard are brothers
Brother(KingJohn,Richard)

® The length of left leg of Richard is greater than the length
of left leg of King John

>(Length(LeftLegOf(Richard)),Length(LeftLegOf(KingJohn)))



—_—

= . |
Atomic Sentences

Brother ( KingJohn, RichardTheLionheart )

i r k y -I L _..ll'
predicate constant constant

atomic sentence




Atomic Sentences

:} ( Length (EeﬁLfeOr{Ruhm :f] IE‘HFIMLFJ‘IE{?F{ Jf[ﬂf}sefu mH}

PFEdlEﬂtE fu HC-UC'I'I function E?'E'rlatﬁm function  function constant
1 PR

term term
atomic sentence

10




Complex Sentences

® Complex sentences are made from atomic sentences using
connectives:

5,81 82,81 S2,S1 S2,S1 82,

Example

Sibling(KingJohn,Richard)  Sibling(Richard,KingJohn)

11



9

Complex Sentences

Sibling( KingJohn,Richard ) = Sibling( Richard, KingJohn )

predicate term term predicate  term term

—.—I '-.—\f—gl
atomic sentence atomic sentence

N ————————————————————————— ——

complex sentence

12



brother

———

~ N erson

“brother 7 ‘o o ing

left leg f N ( leftleg

Five objects-

Richard the Lionheart
Evil King John

Left leg of Richard
Left leg of John

The crown

13
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FOL illustrate

brother

e . o _-d__._,..—-—'_‘—-—..._‘__‘__-‘-
brother

erson
ing

{ leftleg

S

Objects are related with
Relations

For example, King John and
Richard are related with
Brother relationship

This relationship can be
denoted by

Brother(Richard, John),
Brother(John, Richard)

14



= —

FOL illustrate

® Again, the crown and King
John are related with OnHead
Relationship-

brother OnHead (Crown,John)

T —

"

N —— erson

“brother 7 "o o ing

® Brother and OnHead are
binary relations as they relate

two of objects.
" left leg 2R _::::\_Ieft leg

B LA

15
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FOL illustrate

Properties are relations that

are unary.
In this case, Person can be
person brother such property acting upon
NN /Y erson both Richard and John
brother o o Ing
Person (Richard)
Person (John)
Again, king can be acted only
( leftleg I\ A leftleg upon John

L

%® King (John)

16



brother

.-""’-d-_
T

“brother 7

leftleg

-l—'_H_‘—LLh
T

—_—

FOL illustrate

erson
ing

( leftleg

-

Certain relationships are best
performed when expressed as
functions.

Means one object is related
with exactly one object.

Richard -> Richard’s left
leg
John -> John’s left leg

17



Universal quantification

® <variables> <sentence>

x P(x)
® Translated into the English language, the expression is understood as:
@ "For all x, P(x) holds",

@ "for each x, P(x) holds" or
@ “for every x, P(x) holds*

® "All cars have wheels" could be transformed into the propositional
form, xPXx)
@ P(x) is the predicate denoting: x has wheels, and
@ the universe of discourse is only populated by cars. Where x is car

18



Univ

ersal quantification

® If all the elements in the universe of discourse can be

listed t

equival

hen the universal quantification x P(x) is
ent to the conjunction:

P(x1) P(x2) P(x3) .. P(xn).

For example, in the above example of x P(x), if we
knew that there were only 4 cars in our universe of
discourse (c1, c2, ¢3 and c4) then we could also

translate
P(c1)

the statement as:
P(c2) P(c3) P(cd)

19



leftleg

erson
ing

{ leftleg

i
K

Remember, we had five
objects, let us replace them
with a variable x-

x — Richard the Lionheart
x —> Evil King John

x —» Left leg of Richard

x —> Left leg of John

X —> The crown

20



- : - - :
Universal quantification

brother

“brother ;

{ leftleg

® Now, for the quantified sentence
x King (x)  Person (x)

Richard is king  Richard is Person
John is king  John is person

Richard’s left leg is king  Richard’s left leg
is person

John’s left leg is king ~ John’s left leg is
person

The crown is king  the crown is person

21



g \E==E= —

- Universal quantification

brother

e

=

NN — T erson

“brother 7 (o o ing

leftleg F N A leftleg

N — 0

22



Existential guantification

® <variables> <sentence>

x P(x)
® Translated into the English language, the expression is understood as:
@ "There exists an x such that P(x)"
@ "There is at least one x such that P(x)"

® "Someone likes you" could be transformed into the
propositional form, x P(x)

@ P(x) is the predicate meaning: x likes you,
@ The universe of discourse contains (but is not limited to) all
living creatures.

23



Existential quantification

® If all the elements in the universe of discourse can be
listed, then the existential quantification = x P(x) is
equivalent to the disjunction:

P(x1) P(x2) P(x3) .. P(xn) .

For example, in the above example of = x P(x), if we
knew that there were only 5 living creatures in our
universe of discourse (say: me, he, she, they and we),
then we could also write the statement as:

P(me) P(he) P(she) P(they) P(we)

24



I Order of application of
guantifiers

® When more than one variables are quantified in a wff
suchas =y  x P(x,y),they are applied from the
inside, that is, the one closest to the atomic formula is
applied first.

®Thus y xP(x,y)reads. y [ xP(x,y)],and we
say "there exists a y such that for every x, P( x, y ) holds"
or "for some y, P( x, y ) holds for every x".

® WFF = Well formed Formula

25



I Order of application of
guantifiers

® The positions of the same type of quantifiers can be
switched without affecting the truth value as long as there
are no quantifiers of the other type between the ones to be
interchanged.

® Forexample  x y zP(x,y, z)isequivalentto
y. X. ZP(X’y,Z)’ . Z y. XP(X’y’Z)’ Etc'

® It is the same for the universal quantifier.

26



S

Order of application of
guantifiers

® However, the positions of different types of quantifiers
can not be switched.

® For example. x_  yP(x,y)isnotequivalentto y
XP(x,y).

27



S

Order of application of
guantifiers

® x. yx<y
@ “for every number x, there is a number y that is greater than x ”
® Y X x<y

@ “there is a number that is greater than every (any) number ”

28



Properties of quantifiers

® x yisthesameas y x
® x yisthesameas y x

® x yisnotthesameas y x

29



Properties of quantifiers

Quantifier duality: each can be expressed using the other

® x Likes(x,IceCream) is equivalent to
~ x Likes(x,IceCream)

® x Likes(x,Broccoli) is equivalent to
x Likes(x,Broccoli)

30



Properties of quantifiers

Equivalences-
. xPisequivalentto & x P

®
1
2. X Pisequivalentto xP
3. x Pisequivalentto xP
4

~ xPisequivalentto x P

31



Let E(x) mean x is even and G(x, y) mean X > y. Let the universe be the set of naturals.

Let ¥ represent the universal and 1 the existential quantifiers, respectively.

Y x 1y Gly, x) is true, but 1 x ¥V y G(y.x) is false.

" Yes " No

1 x E(x) is true.

" Yes " No

¥ x ¥V yG(x y)is true.

" Yes " No

¥ xG(3dy, x)is a proposition.

" Yes " No




Example knowledge base

® The law says that it is a crime for an American
to sell weapons to hostile nations. The country
Nono, an enemy of America, has some
missiles, and all of its missiles were sold to it
by Colonel West, who is American.

® Prove that Col. West is a criminal

33



Example knowledge base

... it is a crime for an American to sell weapons to hostile nations:
American(x) Weapon(y) Sells(x,y,z) Hostile(z)  Criminal(x)
Nono ... has some missiles,

Owns(Nono,x)

Missile(x)
... all of its missiles were sold to it by Colonel West
Missile(x) Owns(Nono,x)  Sells(West,x,Nono)

Missiles are weapons:
Missile(x)  Weapon(x)

An enemy of America counts as "hostile*:
Enemy(x,America)  Hostile(x)

West, who is American ...
American(West)

The country Nono, an enemy of America ...
Enemy(Nono,America) 34
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Knowledge Base

Inference engine ~—— gdomain-independent algorithms

Knowledge base ~— gdomain-specific eontent

Knowledge base = set of sentences in a formal language

Declarative approach to building an agent (or other system):
TELL it what it needs to know

Then it can Ask itself what to do—answers should follow from the KB

Agents can be viewed at the knowledge level
i.e., what they know, regardless of how implemented

Or at the implementation level
.e., data structures in KB and algorithms that manipulate them




Representation

= Good knowledge representation should combine
= natural language + formal language

= In this chapter we concentrate on first-order
logic (FOL), which forms the basis of most
representations schemes in Al.



General Definition

m [ogic = It is a formal language representing
information that conclusions can be easy drawn

s Syntax = defines the sentences in the
language

= Semantic =9 defines the meaning of the
sentences



Type of Logic

Logics are characterized by what they commit to as “primitives”

Ontological commitment: what exists—facts? objects? time? beliefs?

Epistemological commitment: what states of knowledge?

Language Ontological
commitment (what

exists in the world)

Propositional logic Facts

First-Order Logic Facts,object, relations

Temporal logic

Facts,object, relations,
times

Probability Facts

Epistemological
commitment (what an
agent believes)

True/false/unknown

True/false/unknown

True/false/unknown

Degree of belief 0..1




Propositional Logic

Syntax

Propositional logic is the simplest logic—illustrates basic ideas
The proposition symbols P, ) etc are sentences

If .5 is a sentence, —.5 iIs a sentence

It .5y and 55 is a sentence, S; A S5 is a sentence

If .57 and 59 is a sentence, .5 VvV S9 is a sentence

If 57 and 5. is a sentence, S5, = 52 is a sentence

If .53 and S is a sentence, S|, <> S5 is a sentence



Propositional Logic

Semantic

Each model specifies true/false for each proposition symbol

E.g. A FE G
True True Falszse

FRules for evaluating truth with respect to a model

—.5 is true iff 5 is false
51 A 55 is true iff S is true and Sa is true
S1 WV Ss is true iff S IS true or S5 is true
57 = 55 is true iff 5 is false or S5 is true
i.e., is false iff S s true and Sa iIs false
S & Sy istrueff S = 5 is true amd Ss = S, is true




]
Inference

= Process by which conclusions are reached

m | ogical inference: is a process that implements
the entailment(deduction/conclusion) relation
between sentences

KBF; o = sentence o can be derived from KB by procedure 1

Soundness: i is sound Or truth-preserving
whenever KB F; o, it is also true that KB o

Completeness: ¢ is complete if
whenever KB |= a, it is also true that KB I, a




Propositional Inference: Enumeration Method

let oo = Av Band KB = (Av C)a (B v —~C)

Is it the case that ' B = a7
Check all possible models—a must be true wherever W 5 is true

A B ! Aw | B v —-C KB s
False | False | False
False | False | True
False| True | False
False | True | True
True | False| False
True | False| True
True | Thrue | False
Tirue | True | Thrue

We check

only if KB is true




Propositional inference: Solution

FEi

{-’__l'

AvC

Bv-C

y | KB 0
False | False | False | False | True | False | False
False | False| True | True | False | False | False
False| True | False | False | True | False | True
False| True | True | True | True True | True
True |Falze | False | True | True True | True
TI'rue |False| True | True | False | False | True
T'rue | True | False || True | True | True | True
True | True | True | True | True | True | True




Normal Forms *

Other approaches to inference use syntactic operations on sentences,
often expressed in standardized forms

Conjunctive Normal Form (CNF—universal)
conjunction of disjunctions of literals

clauses
Eg., (Av-B)n(Bv-Cv-D)

Disjunctive Normal Form (DNF—universal)
disjunction of conjunctions of literals
terms
Eg. (AAB)WV(AAN-CIV(AA-DIVI(=BA-C)V (=B AMN-D)




Validity & Satisfiability

A sentence is valid if it is true in all models
e.g., Av A, A= A (An(A = B)) = B

Validity is connected to inference wvia the Deduction Theorem:
KB |Euif and only if (KB = a) is valid

A sentence is satisfiable if it is true in some model
eg., Av B, 9

A sentence is unsatisfiable if it is true in no models
e.g., AA-A

Satishiability is connected to inference via the following:
KB |=wif and only if (B A —ux) is unsatisfiable
i.e., prove o by reductio ad absuwrdum



Standard Logical Equivalences

1. A A A

2. A A A

3. A B B A

4, A (B C (A B) C [ is associative]
5. A (B C (A B) C [ is associative]
6. A (B C (A B) (A O] isdistributive over ]
7. A (A B) A

8. A (A B) A

9. A true A

10. A false false

11. A true true

12. A false A

13. A=>B A B [implication elimination]

(A B) A B [De Morgan]
(A B) A B [De Morgan]

B e
o &



Seven Inference Rules for Propositional Logic

1. Modus-Ponens or Implication elimination (From an implication and the
premise of the implication, you can infer the conclusion)

=> —

J

> And-Elimination (From a conjunction, you can infer any of the
conjuncts )

1 2 3... =1
n
s And-Introduction (From a list of sentences, you can infer their
conjunctign)

1, 2, 3...m= 1 2 3.. n

+  Or-Introduction (From a sentence, you can infer its disjunction)

1 = 1 2 3. n




Seven Inference Rules for Propositional Logic

5. Double-Negation Elimination

o« Unit Resolution (From disjunction, if one is false, then you can infer
the other one is true )

J

. Resolution (Because cannot be true and false in the same time )




Example (1)

= {A, A} (prove ?)

1 A A (using truth table)
2. A (I will replace  A)

3. A A (I will add from KB A)

(  Elimination)




Example (2)

= {A B} {A B} (prove ?)
1. A B (assumption)
2. A, B (by elimination)

A B (by introduction)



Example (3)

— (A B (B A

1. A(assumption)

2. A B (assumption)

3. B (by modus ponens)

4. B, B (introduce B by assumption)
5.

6. A (reduction by absurdum)

7. B A ( introduction)

(A B (B A




Example (4) *

O O N U bk WwN =



Inference using rules

= To proof KB |= A
= Write KB A in CNF Form
= Apply inference rules to find contradiction



First Order Logic

CS 370 — Artificial Intelligence Dr. Mohamed PSU



Definition

m General-purpose representation language
that is based on an ontological commitment
to the existence of the objects and relations
in the world.

= \World =» consists of:
e Objects: people, houses, numbers, colors, wares
e Relations: brother of , bigger than, inside, part of
e Properties: red, round, long, short,,,

e Functions: father of, best friend, one more
than ,,,




Example

= "One Plus Two Equals Three "
e Objects: One, Two, Three, One Plus Two
e Relations: Equals
 Functions: Plus

» "Congratulation Letter written with Blue Pen"
e Objects: Letter, Pen

e Relations: written with
e Properties: Blue, Congratulation



Syntax & Semantic

» In FOL = Sentences + Terms (which
represents objects)

s Sentences = are built using quantifiers and
predicate symbols

» Terms = are built using constants, variables
and functions symbol.



AtomicSentence
| Sentence Connective Sentence
| Quantifier Var,,,,,Sentence
| Sentence
| (Sentence)

Sentence

AtomicSen Predicate(Term,,,,) | Term = Term

Function( Term,,,)

Term | Constant

| Variable
Connective =| | |
Quantifier L
Constant A|1]3]|John|Riad,,,,
Variable alb|c| x|y]|z
Predicate Before | HasColor |After
Function Mother | LeftLegOf | Equal




Syntax and Semantic

Predicate Symbol

It is a particular relation in the model between
pair of objects =» Predicate(lerm,,,,,)

<(1,2) >(3,4)  Brother(mohamed, Mostefa)

Function Symbol

A given object it is related to exactly one other
object by the relation =» Function(Term,,,,,)

FatherOf(Ahmad) Equal(Plus(1,2))




Syntax and Semantic

lerms

It is an expression that refers to an object =
Function(lerm,,,) | variable | constant

FatherOf( Khalid) x v 2  Riyadh Ahmad

Atomic Sentence

Is formed from a predicate symbol followed by
a parenthesized list of terms.

Predicate(Term,,,) or term =term
Older(Youssef, 30) 1=1




Syntax and Semantic

Complex sentences

We can use logical connective to construct more
complex sentences

51 51 52 51 52 51=>52 51 &
52

> (1,2) (1,2)
> (1,2) >(1,2)




Model in FOL

person
erson

ing

4 left leg leftleg
i, U,




Syntax and Semantic

Universal Quantifier

(variables), (Sentence)
Everyone at PSU is smart =»

x At(x, PSU) => Smart(x)

> P is conjunction of instantiations of P
At( mohamed, PSU) => Smart(mohamed)
At(Khalid, PSU) => Smart(Khalid)

> ! The implies (=>) is the main connective with
x At(x, PSU) Smart(x) will has different meaning:
“everyone is at PSU and everyone is smart”




Syntax and Semantic

Existential Quantifier
(variables), (Sentence)

Someone in PSU is smart =

x At(x, PSU) Smart(x)
P is disjunctions of instantiations of P

At( mohamed, PSU)  Smart(mohamed)
At(Khalid, PSU)  Smart(Khalid)

» ! The and ( ) is the main connective with

x At(x, PSU) => Smart(x) will have different
meaning: “The sentence is True for anyone who is not
in PSU” by using the Rule: (A=>B) ( AV B)




Properties of Quantifiers

VYo Yy isthesameasVy VYo (why??)
dx dy isthesameasdy Jx (why??)
dr Yy is not the sameasVy dr

da Yy Loves(x,y)
“There i1s a person who loves everyone in the world”

Yy dx Loves(x,y)
“Ewveryone in the world is loved by at least one person”

Quantifier duality: each can be expressed using the other

Va Likes(x, IceCream) —dx —Likes(x, lceCream)

dax Likes(x, Broecoli) —% & —Likes(x, Broceolt)



Sentences in FOL

Brothers are siblings

“Sibling” s reflexive

One's mother 1s one's female parent

A tfirst cousin is a child of a parent’s sibling



Sentences in FOL

Va,y Brother(r,y) & Sibling(x,y).
Va,y Sibling(x,y) < Sibling(y,z)

Va,y Mother(x,y) < (Female(x)andParent(z,y))

Va,y FirstCousin(r,y) € dp,ps Parent(p,x) A Sibling(ps,p) A
Parent(ps.y)



Equality in FOL

termy = lerms Is true under a given Interpretation
if and only if termy and terms refer to the same object

kg, 1= Eand\:fx x(Sqrtiz), Sqri(z)) = x are satishiable
2=121s valid

E.g., definition of (full) Sibling in terms of Parent:
Y,y Sibling(z,y) & Hlz=y)AIm, [ 2(m=f)A
Parent(m, x) A Parent(f, x) A Par fm'(m. y) A Parent(f, y)|



Exercises Using FOL

m Exercise#1:

e Represent the sentence
“There are two only smarts students in KSU"

X, Y, z student(x), student (y), student(z) and smart(X)
and sm,art(y) and smart(z) and different(x,y) and
(equal(x,z) or equal (y,z))

m Exercise#2 (8.11)Page 269

e Write axioms describing the predicates:
“"GrandChild - Brother - Sister — Daughter — Son”



Problem

= Tarig, Saeed and Yussef belong to the Computer
Club.

e Every member of the club is either programmer or a
analysist or both

e No analysit likes design, and all programmer like C++

e Yussef dislikes whatever Tarig likes and likes whatever
Tariq dislikes

e Tarig likes C++ and design



Solution

" S5(X) means X is a programmer
= M(X) means X is a analysit

®m | (X,y) means x likes y

Is there any member of the club who is analysit but
not programmer?
x S(x) V M (x)

~ xM(x) L(x, design)

x S(x) =>L(x,C++)

y L(Yussef, y) <=> ~L(Tariq,y)
L(tariqg, C++)
L(Tariq,design)



Asking and Getting answers

= To add sentence to a knowledge base KB, we
would call

TELL( KB, m,c Mother(c ) =m <& Female(m)
Parent(m,c))

= To ask the KB:
ASK( KB, Grandparent(Ahmad,Khalid))



Chaining

= Simple methods used by most inference engines
to produce a line of reasoning

= Forward chaining: the engine begins with the
initial content of the workspace and proceeds
toward a final conclusion

» Backward chaining: the engine starts with a goal
and finds knowledge to support that goal



Forward Chaining

m Data driven reasoning
e bottom up
e Search from facts to valid conclusions

®» Given database of true facts

e Apply all rules that match facts in
database

e Add conclusions to database

e Repeat until a goal is reached, OR
repeat until no new facts added



Forward Chaining Example

Suppose we have three rules:
R1: If A and B then D

R2: If B then C

R3: If Cand D then E

If facts A and B are present, we infer D from R1
and infer C from R2. With D and C inferred, we
now infer E from R3.



Example
Rules Facts
R1: IF hot AND smoky THEN fire - alarm-beeps
R2: IF alarm-beeps THEN smoky * hot
R3: IF fire THEN switch-sprinkler

[ . | |
First cycle: R2|m1Ids —smoky

Second cycle:|R1 holds -fire

Third cycle: R3 holds . switch-sprinkler] Action




Forward Chaining Algorithm

® Read the initials facts
°*Begin
- Filter Phase => Find the fired rules

- While Fired rules not empty AND not end DO
® Choice Phase => Solve the conflicts
® Apply the chosen rule
® Modify (if any) the set of rule

- End do
*End



Backward Chaining

m Goal driven reasoning
e top down
e Search from hypothesis and finds supporting facts

= To prove goal G:
e If G is in the initial facts, it is proven.

e Otherwise, find a rule which can be used to conclude G,
and try to prove each of that rule’s conditions.



-
Backward Chaining Example

The same three rules:
R1: If A and B then D
R2: If B then C

R3: If C and D then E

If E is known, then R3 implies C and D are true.
R2 thus implies B is true (from C) and R1 implies
A and B are true (from D).



- alarm-beeps
Example Facts |1 clammbeep
Rules Hypothesis
R1: IF hot AND smoky THEN fire Should | switch the
R2: IF alarm-beeps THEN smoky sprinklers on?
R3: IF fire THEN switch-sprinkler
Evidence
[Jen P2 . |F fire
IF hot v
Use R1 " [_IF smoky
IF alarm-beeps v
Use R2




Backward Chaining Algorithm

* Filter Phase
- IF set of selected rules 1s empty THEN Ask the user
- ELSE
- WHILE not end AND we have a selected rules DO
* Choice Phase
* Add the conditions of the rules

* IF the condition not solved THEN put the
condition as a goal to solve

- END WHILE



Application

= \Wide use in expert systems

e Backward chaining: Diagnosis systems

— start with set of hypotheses and try to prove each one,
asking additional questions of user when fact is unknown.

e Forward chaining: design/configuration systems
— see what can be done with available components.



Comparison

= Backward chaining

e fFrom hypotheses to
relevant facts
e Good when:

— Limited number of (clear)
hypotheses

— Determining truth of facts
is expensive

— Large number of possible
facts, mostly irrelevant

= Forward chaining

e from facts to valid
conclusions
e Good when
— Less clear hypothesis

— Very large number of
possible conclusions

— True facts known at start



Forward chaining

m Jdea: fire any rule whose premises are satisfied in the KB,
e add its conclusion to the KB, until query is found

?
& 5%
LAM = P |
BAL = M E>\
AANP = L M
ANB = L

; £
B /



Forward chaining algorithm

function PL-FC-ENTAILS? (KB, ¢) returns true or false
local variables: count, a table, indexed by clause, initially the number of premises
inferred, a table, indexed by symbol, each entry initially false
agenda, a list of symbols, initially the symbols known to be true

while agenda is not empty do
p + Poprlagenda)
unless inferred[p] do
inferved|p| < true
for each Horn clause ¢ in whose premise p appears do
decrement count|c|
if count|[c] = 0 then do
if HEAD[c¢] = ¢ then return true
Pusn(HEAD|c], agenda)
return false

Forward chaining is sound and complete for Horn KB



Forward chaining example




Forward chaining example




Forward chaining example




Forward chaining example

(e
0\




Forward chaining example




Forward chaining example




Forward chaining example




Forward chaining example




Backward chaining

Idea: work backwards from the query g:

to prove q by BC,
check if g is known already, or

prove by BC all premises of some rule concluding g

Avoid loops: check if new subgoal is already on the goal
stack

Avoid repeated work: check if new subgoal

has already been proved true, or



Backward chaining example




Backward chaining example




Backward chaining example




Backward chaining example




Backward chaining example
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Backward chaining example




Backward chaining example

Q

|
Py
ESN




Backward chaining example

Q




Backward chaining example




Backward chaining example




Forward vs. backward chaining

= FC is data-driven, automatic, unconscious processing,
m e.g., object recognition, routine decisions

= May do lots of work that is irrelevant to the goal

m BC is goal-driven, appropriate for problem-solving,
e e.g., Where are my keys? How do I get into a PhD program?

Complexity of BC can be much less than linear in size of KB



- Forward and Backward Chaining

- Resolution



Forward Chaining

+ Forward Chaining

- Start with atomic sentences in the KB and
apply Modus Ponens in the forward direction,
adding new atomic sentences, until no further
inferences can be made.



Forward Chaining

- Given a new fact, generate all consequences

- Assumes all rules are of the form

- Cl1 and C2 and C3 and.... --> Result

- Each rule & binding generates a new fact

- This new fact will “trigger” other rules

- Keep going until the desired fact is generated
+ (Semi-decidable as is FOL in general)



FC: Example Knowledge Base

- The law says that it is a crime for an
American to sell weapons to hostile
nations. The country Nono, an enemy
America, has some missiles, and all of its

missiles were sold to it by Col. West, who
IS an American.

- Prove that Col. West is a criminal.

4



FC: Example Knowledge Base

...It is a crime for an American to sell weapons to hostile

nations
American(x) Weapon(y) Sells(x,y,z) Hostile(z)  Criminal(x)

Nono...has some missiles
~ x Owns(Nono, x) Missiles(x)

Owns(Nono, M1) and Missle(M1)

...all of its missiles were sold to it by Col. West
X Missle(x) Owns(Nono, x)  Sells( West, x, Nono)

Missiles are weapons 5
Missle(x)  Weapon(x)



FC: Example Knowledge Base

- An enemy of America counts as “hostile”
Enemy( x, America )  Hostile(x)

-+ Col. West who is an American
American( Col. West )

- The country Nono, an enemy of America
Enemy(Nono, America)



FC: Example Knowledge Base

American(West)

Missile(M1)

Ohwns{Nono,M1)

Enemy(Nono,America)




FC: Example Knowledge Base

Weapon(M1)

Sells(West,M1,Nono)

American(West)

Missile(M1)

Ohwns(Nono,M1)

HostilefNono)

Enemy(Nono, America)




FC: Example Knowledge Base

Criminal(West)

Weapon(M1)

Sells(West, M1 ,Nono)

American(West)

Missile(M1)

Ohvwns(Nono,M1)

Hostile(Nono)

Enemy(Nono,America)




Forward Chaining Algorithm

function FOL-FC-ASK(KB, a) returns a substitution or false

repeat until new is empty
new <+ { }
for each sentence rin KB do
(pyAN... N\ p, = @) STANDARDIZE-APART(r)
for each € such that (py A ... A p,)8 = (p; A ... A pl)b
for some py,...,p, in KB
q' <+ SuBsT(#, q)
if ¢’ is not a renaming of a sentence already in KB or new then do
add ¢’ to new
¢ + UNIFY(q', a)
if ¢ is not fail then return ¢
add new to KB

return false

10




Backward Chaining

- Consider the item to be proven a goal

- Find a rule whose head is the goal (and
bindings)

+ Apply bindings to the body, and prove these
(subgoals) in turn

- If you prove all the subgoals, increasing the
binding set as you go, you will prove the item.

+ Logic Programming (cprolog, on CS)

11



Backward Chaining Example

Criminal(West)

12



Backward Chaining Example

Criminal(West)

American(x)

Weapon(y)

Sells(x,y,z)

Ix/West]

Hostile(z)

13



Backward Chaining Example

Criminal(West)

American( West)

Weapon(y)

t)

Sells(x,v,z)

Hostile(z)

14



Backward Chaining Example

Criminal(West)

American(West)

Weapon(y)

U

Missile(y)

Sells(x,v,z)

EITHTE’,S f }

Hostile(z)

15



Backward Chaining Example

Criminal(West)

American(West) Weapon(y)
U
Missile(y)
{ w/MI}

Sells(x,y,z)

{x/West, y/M1I}

Hostile(z)

16



Backward Chaining Example

Criminal(West)

American(West) Weapon(y) Sells(West,MI,z)
i} { z/Nono }
Missile(y) Missile(M1) Owns{Nono,M1)
{ M1}

{x/West, /M1, z/Nono}

Hostile(z)

17



Backward Chaining Example

Criminal(West)

{x/West, y/M1, z/Nono}

American(West) Weapon(y) Sells(West,M1,z) Hostile(Nono)
{} { z/Nono }
Missile(y) Missile(M1) | | Owns(Nono,M1) | | Enemy(Nono,America)
{ /M1 L) {) {}

18



Backward Chaining Algorithm

function FOL-BC-ASsk(KB, goals, #) returns a set of substitutions
inputs: KB, a knowledge base
goals, a list of conjuncts forming a query
6, the current substitution, initially the empty substitution { }
local variables: ans, a set of substitutions, initially empty

if goals is empty then return {6}
q' + SuBST(0, FIRST(go0als))
for each rin KB where STANDARDIZE-APART(r) = (py A ... A p, = q)
and ' < UNIFY(q, ¢') succeeds
ans < FOL-BC-ASK(KB, [pi, . . ., pa|REST(goals)|, COMPOSE(#', §)) U ans

return ans

19




Properties of Backward Chaining

Depth-first recursive proof search: space is linear
in size of proof

- Incomplete due to infinite loops

- Fix by checking current goal with every subgoal on
the stack

- Inefficient due to repeated subgoals (both
success and failure)
- Fix using caching of previous results (extra space)

- Widely used without improvements for logic
programming

20



Resolution

+ Convert everything to CNF (Conjuctive Normal
Form)

- Resolve, with unification

- If resolution is successful, proof succeeds

- If there was a variable in the item to prove,
return variable’s value from unification bindings

21



Resolution (Review)

Resolution allows a complete inference mechanism
(search-based) using only one rule of inference

Resolution rule:
- Given: P1 P2 P3 ... Pnand P1 Q1.. Qm

- Conclude: P2 P3 ... Pn Q1.. Qm
Complementary literals P1 and P1 “cancel out”

To prove a proposition F by resolution,
- Start with F
- Resolve with a rule from the knowledge base (that contains F)
- Repeat until all propositions have been eliminated

- If this can be done, a contradiction has been derived and the
original proposition F must be true.

22



Propositional Resolution Example

Rules

- Cold and precipitation -> snow
—cold =precipitation snow

- January -> cold
—January cold

- Clouds -> precipitation
—clouds precipitation

Facts
- January, clouds

Prove
- SNOW

23



Propositional Resolution Example

asnow  -cold -precipitation snow

~January cold

~cold -precipitation
~January _,Ws precipitation

January -~January _~clouds

/

-clouds clouds

T~

]
24



Resolution Theorem Proving
(FOL)

- Convert everything to CNF

- Resolve, with unification

- Save bindings as you go!

- If resolution is successful, proof succeeds

- If there was a variable in the item to

prove, return variable’s value from
unification bindings

25



Converting to CNF

Replace implication (A B)by A B
Move ‘“inwards”
X P(x) is equivalentto. x P(x) & vice versa

Standardize variables
* . xXP(x) . xQ(x) becomes xP(x) . yQ(y)

Skolemize
* X P(x) becomes P(A)
Drop universal quantifiers
Since all quantifiers are now , we don’t need them

Distributive Law

26



Convert to FOPL, then CNF

John likes all kinds of food
Apples are food.
Chicken is food.

Anything that anyone eats and isn't killed
by is food.

Bill eats peanuts and is still alive.
Sue eats everything Bill eats.

27



Prove Using Resolution

John likes peanuts.
Sue eats peanuts.
Sue eats apples.

What does Sue eat?

Translate to Sue eats X
Result is a valid binding for X in the proof

28



Another Example

- Steve only likes easy courses

- Science courses are hard

- All the courses in the basket weaving
department are easy

- BK301 is a basket weaving course
- What course would Steve like?

29



Another Resolution Example

- American(x) v T Weapon(y) v — Sells(x,y,z}) v 7 Hostile(z) v Criminal(x) = Criminal(West)
\ /
American(West) = American(West) v — Weapon(y) v = Sells(West,y,z) v — Hostile(z)
\
- Missile(x) v Weapon(x) = Weapon(y) v = Sells(Westy,z) v — Hostile(z)
MissileiM1) = Missile(y) v - Sells(West,y,z) v — Hostile(z)
\
= Missilefx) v - Owns{Nono,x) v Sells{West,x,Nono) = Sells(West,M1,z) v — Hostile(z)
\ /
Missile(M1) = Missile(M1) v — Owns{Nono,MI1) v — Hostile{Nono)
\ /
ChwnsiNono, M1} - Owns(Nono,MI1) v — Hostile(Nono)
\ /
= Enemy(x,America) v Hosfile(x) = Hostile(Nono)
7
Enemy(Nono,dmerica) Enemy(Nono,America)

=

30



Final Thoughts on Resolution

Resolution is complete. If you don't want to
take this on faith, study pp. 300-303

Strategies (heuristics) for efficient resolution
include

- Ur%it preference. If a clause has only one literal, use
It first.

- Set of support. Identify “useful” rules and ignore the
rest. (p. 305)

- Input resolution. Intermediately generated sentences
can only be combined with original inputs or original
rules. (We used this strategy in our examples).

- Subsumption. Prune unnecessary facts from the
database.
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CMSC 310 Atrtificial Intelligence

Probabilistic Reasoning and Bayesian Belief Networks
Probabilities, Random Variables, Probability Distribution,
Conditional Probability, Joint Distributions, Bayes Theorem

1. Probability of an Event

Consider an experiment that may have different outcomes. We are interested to know what is the
probability of a particular set of outcomes.

Let sample space S be the set of all possible outcomes
Let Event A be any subset of S

Definition 1: probability(A) = (number of outcomes in A)/ (total number of outcomes)

P(A) =|Al7]S]
i.e. the probability of A is equal to the number of outcomes of interest divided by the number of all
possible outcomes.

P(A) is called prior (unconditional) probability of A
P(~A) is the probability event A not to take place.

Example 1:the probability to pick a spade card out of a deck of 52 cards is 13/52 = Y4
The probability to pick an Ace out of a deck of 52 cards is 4/52 = 1/13

Probability Axioms:
(1) 0<P(A)< 1
(2) P(A) = 1-P(~A)
(3) P(Av B) = P(A) + P(B)- P(A & B)

P(A v B) means the probability of either A or B or both to be true
P(A&B) means the probability of both A and B to be true.

Example 2: P(~A)- The probability to pick a card that is not a spade out of a deck of 52 cards is
11/4 = 3/4
Example 3:P(Av B) — The probability to pick a card that is either a spade or an Ace is
1/4 + 1/13 - 1/4 *1/13 = 16/52 = 4/13
Another way to obtain the same result: There are 13 spade cards and 3 additional Ace cards in the set of
desired outcomes. The total number of cards is 52, thus the probability is 16/52.

Example 4:P(A&B) - The probability to pick the spade Ace is 1/52



2. Random Variables and Probability Distributions

To handle more conveniently the outcomes, we can treat them as values of sacdtiadvariables.
For example “spade” is one possible value of the variable Suit, “clubs” is another possible value. In the
card example, all values of the variable Suit are equally probable. This is not always so however. We
may be interested in the probabilities of each separate value.

The set of the probabilities of each value is called probability distribution of the random
variable.

Let X be a random variable with a domain <%, ..., x>
The probability distribution of X is denoted BP¢X) = <P(X = x), P(X=x%), ...,P(X=x,)>
Notethat PX=®0 + P(X=%)+ ...+ PX=xp) =1

Example 5: Let Weather be a random variable with values <sunny, cloudy, rainy, snowy>
Assume that records for some town show that in a year 100 days are rainy, 50 days are snowy, 120 days
are cloudy (but without snow or rain) and 95 days are sunny.
i.e. P(Weather = sunny) = 95/365 = 0.26
P(Weather = cloudy) = 120/365 = 0.33
P(Weather = rainy) = 100/365 = 0.27
P(Weather = snowy) =50/365=0.14

ThusP(Weather) = <0.26, 0.33, 0.27, 0.14> is the probability distribution of the random variable
Weather.

3. Joint Distributions

The following example is used to illustrate conditional probabilities and joint distributions
Example 6: Consider a sample S of of 1000 individuals age 38. Assume that 600 individuals
come from high-income families, 570 of those with high income have college education and 100
individuals with low income have college education.

The following table illustrates the example:

C ~C
College ed. Not college ed.
H  High income 570 30 600
~H Low income 100 300 400
670 330 1000

Let H be the subset of S of individuals coming from high-income families, |H| = 600
Let C be the subset of S of individuals that have college education, |C| = 670



The prior probabilities of H, ~H, C and ~C are:
P(H) = 600 / 1000 = 0.6 (60%) P(~H) = 400/1000 =0.4 (40%)
P(C) =670 /1000 = 0.67 (67%) P(~C) = 330/ 1000 = 0.33 (33%)

We can compute also P(H&C), P(H & ~C), P(~H & C), P(~H & ~C)

P(H&S) = |H &C| / [S| = 570/1000 = 0.57 (57%) - the probability of a randomly selected
individual in S to be of high-income family and to have college education.

P(H & ~C) = |[H& ~C| / |S| = 30/1000 = 0.03 (3%) - the probability of a randomly selected
individual in S to be of high-income family and not to have college education.

P(~H & C) = |~H& C| / |S| = 100/1000 = 0.1 (10%) - the probability of a randomly selected
individual in S to be of low-income family and to have college education.

P(~H & ~C) = |~H& ~C] / |S| = 300/1000 = 0.3(30%) - the probability of a randomly selected
individual in S to be of low-income family and not to have college education.

Thus we come to the following table:

C ~C
College ed. Not college ed.
H  High income 0.57 0.03 0.6
~H Low income 0.10 0.30 0.4
0.67 0.33 1

Here we will treat C and H as random variables with values “yes” and “no”. The values in the table
represent thgoint distribution of C and H, forexample
P(C =yes, H=yes) =0.57

Formally, joint distribution is defined as follows:

Definition 2: Let X1, X2, .., Xn be a set of random variables each with a range of specific values.
P(X1,X2,...,Xn) is called joint distribution of the variables X1, X2, ..., Xn and it is defined by a n-
dimensional table, where each cell corresponds to one particular assignment of values to the variables

X1, X2, ..., Xn
Each cell in the table corresponds taasmmic event— described by a particular assignment of
values to the variables.

Since the atomic events are mutually exclusive, their conjunction is necessarily false.
Since they are collectively exhaustive, the disjunction is necessarily true.
So by axioms (2) and (3) the sum of all entries in the table is 1



Given a joint distribution table we can compute prior probabilities:
P(H)=P(H &C) + P(H& ~C) =0.57 + 0.03 = 0.6
Given a joint distribution table we can compute conditional probabilities, discussed in the next section.

4. Conditional Probabilities

We may ask: what is the probability of an individual in S to have a college education given that he/she
comes from a high income family?

In this case we consider only those individuals that come from high income families. Their number is
600. The number of individuals with college edication within the group of high-family income is 570.
Thus the probability to have college education given high-income family is 570/600 = 0.95.

This type of probability is calledonditional probability

The probability of event B given event A is denoted as P(B|A), read “P of B given A”
|C & H|
In our example, P(C|H) = ---------=------
H|

We will represent P(C|H) by P(C&H) and P(H)

|C & Hj
|C & Hj S| P(C&H)
P(C|H) = ==-mmmmmmmee = oo T -
Lal |H P(H)
IS|
Therefore

P(CI|H) = P(C&H) / P(H)
Definition 3: The conditional probability of an event B to occur given that event A has occurred is

P(BJA) = P(B&A) / P(A)
P(BJA) is known also agosterior probability of B

P(B & A) is an element of the joint distribution of the random variables A and B.

In our example, P(C&H) = P(C = yes, H = yes). Thus given the joint distribRtieh C), we can
compute the prior probability P(H), P(~H), P(C), P(~C) and then the conditional probability P(C|H),
P(C|~H), P(H|C), P(H|~C) .



Independent events

Some events are not related, for example each outcome in a sequence of coin flips is independent on
the previous outcome.

Definition 4: Two eventsA and B are independentf P(A|B) = P(A), and P(BJA) = P(B).
Theorem: A and B are independent if and only if P(A & B) = P(A)*P(B)
The proof follows directly from Definition 3 and Definition 4.

Another definition: X and Y are conditionally independent iff P(X|Y & Z) = P(X|2)
5. Bayes' Theorem

From Definition 3 we have

P(A&B) = P(A|B)*P(B)
P(B&A) = P(B|A)*P(A)

However, P(A&B) = P(B&A)
Therefore

P(BIA)*P(A) = P(A|B)*P(B)

P(AIB) * P(B)
P(B|A) = -------=-mmmmmmmem -
P(A)

This is the Bayes' formula for conditional probabilities, known also as Bayes' theorem

5.1. More than 2 variables
Bayes' theorem can represent conditional probability for more than two variables:

PX|Y1&Y2 & ...& Yn)=P(Y1 & Y2 & ... & Yn | X) * P(X) /P(Y]1 & Y2 & ... & Yn)

Think of X as being hypothesis, and Y1, Y2, ..., Yn as being n pieces of evidence for the hypothesis.
When Y1,Y2, ..., Yn are independent on each other, the formula takes the form:

PYLIX)*P( Y2|X)*...*P(Yn | X) * P(X)
ST AT ZE T ¢ ) L —
P(Y1)*P(Y2)*..*P(Yn)

In case of several related events, the Bayes' formula is used in the following form:

P(X1 & X2 & ... & Xn) = P(X1) * P(X2[X1) * P(X3 | X2 & X1) ... P(Xn | Xn-1 & ... X1)



5.2. Normalization
Consider the probability of malaria given headache
P(M[H) = P(H | M)*P(M) / P(H)

It may be more difficult to compute P(H) than P(H|M) and P(H | ~M).
We can represent P(H) trough P(H|M) and P(H | ~M).

We have:

P(M[H) = P(H | M)*P(M) / P(H)
P(~M[H) = P(H | ~M)*P(~M) / P(H)

Adding these equations we obtain
P(M|H) + P(~M|H) = (P(H | M)*P(M) + P(H | ~M)*P(~M) )/ P(H)
For the left side we know that P(M|H) + P(~M|H) =1

So we have
1=(P(H|M*P(M) +P(H|~M)*P(~M) )/ P(H)

Multiply both sides by P(H):
P(H) = P(H|M)*P(M) +P(H|~M)*P(~M)

Replacing in the Byes’ Theorem P(H) with the right side above, we get:

P(H | M)*P(M)
P(M[H) =

P(H | My*P(M) + P(H | ~M)*P(~M)

This process is called normalization because it resembles the normalization process for functions
multiplying a function by a chosen constan so that its values stay withun a specified range.

5.3. Relative Likelihood of two events
Given that you have a headache, is it more likely that you have flu rather than plague?

P(plague|headache) = P(headache | plague) * P(plague) / P(headache)
P(flu | headache) = P(headache | flu) * P(flu) / P(headache)

The ratio
P(plaguelheadache)  P(headache | plague) * P(plague)

P(flu | headache) P(headache | flu) * P(flu)

is called relative likelihood of having plague vs having flu given headache. It can be computed without
knowing P(headache).



In general, the relative likelihood of two events B and C given A is computed as follows

P(BIA) P(A|B)* P(B)

P(C|A) P(A|C)*P(C)
5.4. Example: The Monty Hall game

You are about to choose your winning in a game show. There are three doors behind one of which is a
red Porsche and other two, goats. You will get whatever is behind the door you choose. You pick a
door, say A At this point the game show host opens one of the other two doors, which he knows to
contain a goat, for example B and asks if you would now like to revise your choice to C. The question
is: Should you? (Assuming you want the car and not the goat.)

Let P(PA). P(PB), and P(PC) be the probabilities of the Porsche being behind door A, door B and door
C respectively. We assume that the car is randomly placed, so
P(PA) = P(PB) = P(PC) = 1/3

Let O be the event that Monty Hall opens door B.
The Monty Hall Problem can be restated as follows: is P(PA | O) = P(PC| O)

By the Bayes' Theorem we have:
P(O | PA) * P(PA)
P(PA| Q)= ----mmmmmmmmmmeeeee
P(O)

P(O | PC) * P(PC)

P(PC | O)= ----mmmmmmmmmmmmee-
P(O)

We have to compute P(O), P(O|PA) and P(O|PC)
P(O | PA) =1/ 2, if the car is behind A, Monty Hall can open either B or C
P(O|PB)=0 ,ifthe caris behind B, Monty Hall will not open B
P(O|PC)=1 ,ifthe caris behind C, Monty Hall can only open door B
P(O) = P(O|PA)* P(PA) + P(O|PB) * P(PB)+ P(O|PC) * P(PC) (see section 5.2. Normalization)

PO)=1/3*(1/2 +0+1) =1/2
Therefore we obtain:

P(PA|O)= (1/2*1/3)/(1/2)=1/3
PPC|O)= (1*1/3)/(1/2)=2/3

So, if you switch to door C, you double your chance to win the Porsche.



5.5. Useful expressions

P(A&B)
Nz I ——
P(B)
P(A & B)
P(A|B) = -
P(A&B) + P(~A & B)
P(BIA) * P(A)
=) o ——
P(B)
P(BIA) * P(A)
P(A|B) = ---ememv -

P(BIA)*P(A) + P(B|~A) * P(~A)
6. Simple Bayesian Concept Learning

The Bayes' theorem can be used to solve the following problem:
Determine the most probable hypothesis out of n possible hypothgdds,H, H,, given a set of
evidence E. For each; Hve can compute

P(E[ P(H)
P(H |E) = ----mmmm- P (E) """"

and take the hypothesis for which P(H | E) has the greatest value.

This is a maximization problemwe are not looking for the particular value of each;F(H) , we are
looking the hypothesis for which the posterior probability is maximum. Hence we can simplify the
expression to be computed based on the following considerations:

a) The evidence is not dependent on the hypotheses, so we can remove P(E) :
P(H | E) = P(E[H) * P(H)

b) Assuming that all hypotheses are equally likely (same prior probability), we can remove the
prior probability

P(H |E)= P(E|H)
We choose the hypothesis for which the value of  R(Ejsl highest.
P(E|H) is known as the likelihood of the evidence E given the hypothesis H

Additional Reading:
http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability book/Chapter4.pdf



http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/Chapter4.pdf

Utility function

Utility function (denoted U)
- Quantifies how we “value” outcomes, i.e., it reflects our preferences

- Can be also applied to “value” outcomes other than money and gains (e.g. utility of
a patient being healthy, or ill)

Decision making:

- uses expected utilities (denoted EU)

EU(X) P(X xU(X x)

x X
U(X x) the utility of outcome x

Important !!!
Under some conditions on preferences we can always design the utility function
that fits our preferences




Utility theory

Defines axioms on preferences that involve uncertainty and ways to manipulate
them.
Uncertainty is modeled through lotteries
- Lottery: )
[p:4;(1 p):C]

* Outcome A with probability p

* Outcome C with probability (1-p)
Thegf;)llowing six constraints are known as the axioms of utility theory. The
axioms -aﬁ?di@?@réﬂpééqﬁgﬁgpﬁ?ef%‘?ﬁﬁlgjic constraints on preferences with

lotteries.

Axioms of the utility theory

Orderability: Given any two states, the a rational agent prefers one of them,
else the two as equally preferable.

(Af B) (Bf A) (A~B)
Transitivity: Given any three states, if an agent prefers 4 to
B and prefers B to C, agent must prefer 4 to C.

(Af B) (Bf C) (Af C)

Continuity: If some state B is between 4 and C in preference, then there is a p for
which the rational agent will be indifferent between state B and the lottery in which
A comes with probability p, C with probability (1-p).

(Af BE C) pl[p:4:(0 p):C]~B




Axioms of the utility theory

Substitutability: If an agent is indifferent between two lotteries, 4 and B, then
there is a more complex lottery in which A can be substituted with B.

(4~B) [p:4;(1 p):Cl~[p:B(1A p):C]
Monotonicity: If an agent prefers 4 to B, then the agent must prefer the lottery
in which A occurs with a higher probability

(Af B) (p q [p:4Q0 p):Blf [qg:4;(1 ¢):B])
* Decomposability: Compound lotteries can be reduced to simpler lotteries using
the laws of probability.

[p:4;(1 p):lg:B;(1 ¢):Cl]
[p:4;(1 p)g:B;(1 p)1 ¢q):C]

Utility theory

If the agent obeys the axioms of the utility theory, then
.. there exists a real valued function U such that:

U(A) U(B) Af B
U(4) U(B) A~B

. The utility of the lottery is the expected utility, that is the sum of utilities of
outcomes weighted by their probability

Ulp:4;(1 p):B] pU(A4) (I p)U(B)

s Rational agent makes the decisions in the presence of uncertainty by
maximizing its expected utility




Utility functions

We can design a utility function that fits our preferences if they satisfy the axioms
of utility theory.

But how to design the utility function for monetary values so that they
incorporate the risk?

What is the relation between utility function and monetary values?
Assume we loose or gain $1000.

— Typically this difference is more significant for lower values
(around $100 -1000) than for higher values (~

$1,000,000)
What is the relation between utilities and monetary value for a typical person?

Utility functions

What is the relation between utilities and monetary value for a typical
person?

Condave function that flattens at higher monetary values

utility

100,000 Monetary value




Utility functions

Expected utility of a sure outcome of 750 is 750

EU(sure 750)

utility

500 750 1000 Monetary value

Utility functions

Assume a lottery L [0.5: 500, 0.5:1000]

Expected value of the lottery = 750

Expected utility of the lottery EU(L) is different:
EU(L) = 0.5U(500) + 0.5*

EU line for lo(t} {'es
with outcomes 500 and 1000

Lottery L: [0.5: 500, 0.5:1000]

utility EU(lottery L))

500 750 1000 Monetary value




Utility functions

Expected utility of the lottery EU(lottery L) < EU(sure 750)
U(x)

utility EU(lottery L))

Lottery L: [0.5: 500, 0.5:1000]

500 750 1000 Monetary value

Risk aversion — a bonus is required for undertaking the risk




Hidden Markov model

A hidden Markov model (HMM) is a statistical Markov model in which the system being
modeled is assumed to be a Markov process with unobserved (hidden) states. An HMM can be
presented as the simplest dynamic Bayesian network. The mathematics behind the HMM were
developed by L. E. Baum and coworkers. It is closely related to an earlier work on the optimal
nonlinear filtering problem by Ruslan L. Stratonovich who was the first to describe the forward-
backward procedure.

In simpler Markov models (like a Markov chain), the state is directly visible to the observer, and
therefore the state transition probabilities are the only parameters. In a hidden Markov model, the
state is not directly visible, but the output, dependent on the state, is visible. Each state has a
probability distribution over the possible output tokens. Therefore, the sequence of tokens
generated by an HMM gives some information about the sequence of states. The adjective
'hidden' refers to the state sequence through which the model passes, not to the parameters of the
model; the model is still referred to as a 'hidden' Markov model even if these parameters are
known exactly.

Hidden Markov models are especially known for their application in temporal pattern
recognition such as speech, handwriting, gesture recognition, part-of-speech tagging, musical
score following, partial discharges and bioinformatics.

A hidden Markov model can be considered a generalization of a mixture model where the hidden
variables (or latent variables), which control the mixture component to be selected for each
observation, are related through a Markov process rather than independent of each other.
Recently, hidden Markov models have been generalized to pairwise Markov models and triplet
Markov models which allow consideration of more complex data structures and the modelling
of nonstationary data.

Description in terms of urns

Figure 1. Probabilistic parameters of a hidden Markov model (example)
X — states

y — possible observations

a — state transition probabilities

b — output probabilities


https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Latent_variables
https://en.wikipedia.org/wiki/Mixture_model
https://en.wikipedia.org/wiki/Bioinformatics
https://en.wikipedia.org/wiki/Partial_discharge
https://en.wikipedia.org/wiki/Part-of-speech_tagging
https://en.wikipedia.org/wiki/Gesture_recognition
https://en.wikipedia.org/wiki/Handwriting_recognition
https://en.wikipedia.org/wiki/Speech_recognition
https://en.wikipedia.org/wiki/Time
https://en.wikipedia.org/wiki/Markov_chain
https://en.wikipedia.org/wiki/Markov_model
https://en.wikipedia.org/wiki/Forward%E2%80%93backward_algorithm
https://en.wikipedia.org/wiki/Forward%E2%80%93backward_algorithm
https://en.wikipedia.org/wiki/Filtering_problem_(stochastic_processes)
https://en.wikipedia.org/wiki/Leonard_E._Baum
https://en.wikipedia.org/wiki/Dynamic_Bayesian_network
https://en.wikipedia.org/wiki/Markov_process
https://en.wikipedia.org/wiki/Markov_model

In its discrete form, a hidden Markov process can be visualized as a generalization of the Urn_
problem with replacement (where each item from the urn is returned to the original urn before
the next step). Consider this example: in a room that is not visible to an observer there is a genie.
The room contains urns X1, X2, X3, ... each of which contains a known mix of balls, each ball
labeled y1, y2, y3, ... . The genie chooses an urn in that room and randomly draws a ball from
that urn. It then puts the ball onto a conveyor belt, where the observer can observe the sequence
of the balls but not the sequence of urns from which they were drawn. The genie has some
procedure to choose urns; the choice of the urn for the n-th ball depends only upon a random
number and the choice of the urn for the (n — 1)th ball. The choice of urn does not directly
depend on the urns chosen before this single previous urn; therefore, this is called a Markov
process. It can be described by the upper part of Figure 1.

The Markov process itself cannot be observed, only the sequence of labeled balls, thus this
arrangement is called a "hidden Markov process". This is illustrated by the lower part of the
diagram shown in Figure 1, where one can see that balls y1, y2, y3, y4 can be drawn at each
state. Even if the observer knows the composition of the urns and has just observed a sequence of
three balls, e.g. y1, y2 and y3 on the conveyor belt, the observer still cannot be sure which urn
(i.e., at which state) the genie has drawn the third ball from. However, the observer can work out
other information, such as the likelihood that the third ball came from each of the urns.

Architecture

The diagram below shows the general architecture of an instantiated HMM. Each oval shape
represents a random variable that can adopt any of a number of values. The random variable x(¢)
is the hidden state at time ¢ (with the model from the above diagram, x(¢) € { x1, x2, x3 }). The
random variable y(¢) is the observation at time ¢ (with y(¢) € { yi, 2, ¥3, y4 }). The arrows in the
diagram (often called a trellis diagram) denote conditional dependencies.

From the diagram, it is clear that the conditional probability distribution of the hidden variable
x(?) at time ¢, given the values of the hidden variable x at all times, depends only on the value of
the hidden variable x(z — 1); the values at time # — 2 and before have no influence. This is called
the Markov property. Similarly, the value of the observed variable y(#) only depends on the value
of the hidden variable x(¢) (both at time ?).

In the standard type of hidden Markov model considered here, the state space of the hidden
variables is discrete, while the observations themselves can either be discrete (typically
generated from a categorical distribution) or continuous (typically from a Gaussian distribution).
The parameters of a hidden Markov model are of two types, transition probabilities and
emission probabilities (also known as output probabilities). The transition probabilities control
the way the hidden state at time 7 is chosen given the hidden state at time t-1.

The hidden state space is assumed to consist of one of N possible values, modeled as a
categorical distribution. (See the section below on extensions for other possibilities.) This means
that for each of the N possible states that a hidden variable at time # can be in, there is a transition
probability from this state to each of the N possible states of the hidden variable at time t-1, for a
total of N? transition probabilities. Note that the set of transition probabilities for transitions from
any given state must sum to 1. Thus, the N* N matrix of transition probabilities is a Markov
matrix. Because any one transition probability can be determined once the others are known
there are a total of N(N-1) transition parameters.

In addition, for each of the N possible states, there is a set of emission probabilities governing the
distribution of the observed variable at a particular time given the state of the hidden variable at
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that time. The size of this set depends on the nature of the observed variable. For example, if the
observed variable is discrete with M possible values, governed by a categorical distribution, there
will be M-1 separate parameters, for a total of N(M-1) emission parameters over all hidden
states. On the other hand, if the observed variable is an M-dimensional vector distributed
according to an arbitrary multivariate Gaussian distribution, there will be M parameters
controlling the means and M(M+1)/2 parameters controlling the covariance matrix, for a total of
N(M+ M(M+1)/2) = NM(M+3)/2 = O(NM?) emission parameters. (In such a case, unless the
value of M is small, it may be more practical to restrict the nature of the covariances between
individual elements of the observation vector, e.g. by assuming that the elements are independent
of each other, or less restrictively, are independent of all but a fixed number of adjacent
elements.)
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Introduction to Hidden Markov
Models



Markov Models

Set of states: {SI,SZ,...,SN}

Process moves from one state to another generating a sequence of states :
Markov chain property: probability of each subsequent state depends only on what
was the previous state: S,’1:Siza- . ,Sik,. X

To define Markov model, the following probabilities have to be specified: transition
probabilities P( S | Si1s lzajnd mlgal pr(yoablyﬂéglk | S 1)

a, P(s|s,)

y

P(s;)



Example of Markov Model

0.3 0.7
e
1
0.2 0.8

* Two states : ‘Rain’ and ‘Dry’.

" Transition probabilities: P(‘Rain’|‘Rain’)=O.3 , P(‘Dry’|‘Rain’)=O.7 :
P(“Rain’|Dry*)=0.2, P(“Dry’|'Dry*)=0.8

" Initial probabilities: say P(‘Rain’)=0.4 , P(“Dry*)=0.6 .



Calculation of sequence probability

* By Markov chain property, probability of state sequence can be found by the
formula:

P(SiI’Si29"°9Sik) P(Sik |Si1’Si29"°9Sik~I)P(SiIDSiZ""’Sikﬂl)
PCsy | it PS80 1)
P(sy |8 DPCs ) [5)c P(s,, | 5)P(s,)

' Suppose we wan% fo calctliatt a probablhty of a sequen of statés'in our example,
{‘Dry’,’Dry’,’Rain’,Rain’}.

P({‘Dry”,DrY’,’Rain’,Rain’} ) =
P(‘Rain’|’Rain’) P(’Dry,|‘Rain,) P(‘Dry>|>Dry,) P(‘Dry,):
=0.3*0.2*0.8*0.6



Hidden Markov models.

Set of states: {S19S29' . ,SN}

* Process moves from one state to another generating a sequence of states :
Markov chain property: probability of each subsequent state depends only on what
was the previous state: Sil,Siz,. . 9Sik9° .

States are not visible, but each state randomly generates one of M observations (or

visible states)
P(Sy | Si5Sise-58571)  P(Sy | 8571)
To define hidden Markov model, the following probabilities have to be specified:

matrix of transition probabilities A:(élﬁ])ﬂ/ag: %1} | Sj) , matrix of
observation probabilities B:(bi (Vm )), bi(Vm ) — P(Vm | Si) and a
vector of initial probabilities :( i), i — P(Si) . Model is represented

by M:(A, B, )



Example of Hidden Markov Model

0.3 0.7
g
) @@
D.2 0.8
0.6 0.6
04 04

Rain Dry




Example of Hidden Markov Model

* Two states : ‘Low’ and ‘High’ atmospheric pressure.
* Two observations : ‘Rain’ and ‘Dry’.

" Transition probabilities: P(‘Low’|Low’)=03 , P(‘High’|Low’)=0.7
P(“Low’|High*)=0.2, P(‘High’|High* }=0.8

" Observation probabilities : P(‘Rain’|“Low’ )=0.6 , P(“Dry’|“Low*)=0.4,
P (“Rain’|‘High*)=0.4 , P(“Dry’|High*)=03 .

" Initial probabilities: say P(‘Low’)=0.4 , P(‘High’)=0.6 :



Calculation of observation sequence probability

* Suppose we want to calculate a probability of a sequence of observations in our
example, {‘Dry’,’Rain’}.
* Consider all possible hidden state sequences:

P({‘Dry’,’Rain’} ) — P({‘Dry’,’Rain’} , {‘Low’,’Low’}) +
P({Dry", Rain’} , {‘Low’, High'}) T P({Dry","Rain’} , {‘High’ Low’}) +

P({‘Dry",Rain’} , {‘High’,'High"} )

where first term s :

P({Dry’ Rain’} , {‘Low’,’Low’} )=

P({Dry’ Rain’} | {Low’, Low’}) P({Low, Low}) =
P(‘Dry’rLow’ )P (Rain’Low’) P(Low’)P(‘Low’'Low)
=0.4*%0.4*0.6*0.4*0.3



Main 1ssues using HMMs :

Evaluation problem. Given the HMM M:(A, B, ) and the observation
sequence 0=0102... Ok , calculate the probability that model M has generated
sequence O
Decoding problem. Given the HMM M:(A, B, ) and the observation
sequence 0=0102... Ok , calculate the most likely sequence of hidden states Si
that produced this observation sequence O

Learning problem. Given some training observation sequences 0=0102... Ok
and general structure of HMM (numbers of hidden and visible states), determine HMM

parameters M:(A, B ’ ) that best fit training data.

(=01...0K denotes a sequence of observations Ok {V1, ..., VM}.
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" Probability theory
" Bayesian networks
® Certainty factors



w 1. Probability theory

1.1 Uncertain knowledge

p symptom(p, Toothache)  disease(p,cavity)
p sympt(p,Toothache)

disease(p,cavity) disease(p,gum disease)
= PL
- laziness
- theoretical 1ignorance
- practical 1ignorance

" Probability theory & degree of belief or plausibility
of a statement — a numerical measure 1n [0,1]

" Degree of truth — fuzzy logic  degree of belief



w 1.2 Definitions

" Unconditional or prior probability of A — the degree of belief
in A in the absence of any other information — P(A)

" A - random variable
"  Probability distribution — P(A), P(A,B)

P(Weather = Sunny) = 0.1
P(Weather = Rain) = 0.7
P(Weather = Snow) = 0.2

Weather — random variable
= P(Weather) = (0.1, 0.7, 0.2) — probability dsitribution

" Conditional probability — posterior — once the agent has
obtained some evidence B for A - P(A|B)

= P(Cavity | Toothache) = 0.8



w Definitions - cont

" Axioms of probability

= The measure of the occurrence of an event
(random variable) A — a function P:§ R satisfying
the axioms:

=0 PA) 1
" P(S)=1 (orP(true) = 1 and P(false) = 0)
= P(A B)=P(A)+PB)-P(A B)

P(A ~A)=P(A)+P(~A) —P(false) = P(true)
P(~A)=1-P(A)



w Definitions - cont

A and B mutually exclusive @ P(A  B)=P(A) + P(B)

P(el €2 e3 ...en)=P(el)+P2)+P3)+... +
P(en)

The probability of a proposition a 1s equal to the sum of
the probabilities of the atomic events in which a holds

e(a) — the set of atomic events in which a holds
P(a)= P(e1)

el e(a)



ﬁ« 1.3 Product rule

Conditional probabilities can be defined in terms of
unconditional probabilities

The condition probability of the occurrence of A if
event B occurs

" PABB)=P(A B)/P(B)
This can be written also as:
= P(A B)=P(A|B) * P(B)
For probability distributions
= P(A=al B=bl)=P(A=al|B=bl) * P(B=bl)
= P(A=al B=b2)=P(A=al|B=b2) * P(B=b2) ....
" P(X,Y)=PX|Y)*P(Y)



w 1.4 Bayes’ rule and its use

P(A B)=P(A[B) *P(B)
P(A B)=P(B|A) *P(A)

Bays’ rule (theorem)
= P(BJA)=P(A|B) * P(B) / P(A)

= P(B|A) = P(A | B) * P(B) / P(A)



w Bayes’ Theorem for 2 events

P(A)P(B| A
P(A4, | B) &

P(A)P(B| 4) P(4,)P(B|A4,)

P(A,)P(B| A
P(A4, | B) &

P(A)P(B|4,) P(4,)P(B]|A4,)



w Bayes Theorem

hi — hypotheses (1=1,k);
el,...,en - evidence
P(hi1)

P(hi|el,...,en)
P(el,...,en| h1)

p e lh) P(h)
P(hief,er,....c,) = npmm— i=1k

P(el,eQ,...,en|hj) P(hJ)
] 1



| Bayes’ Theorem - cont

If el,...,en are 1ndependent hypotheses
then

P(e,,e5,¢, [h) = P(e, [h,) P(e, |h)) ... P(e, |h), =1k

10



w 1.5 Inferences

Probability distribution P(Cavity, Tooth)

Tooth Toloth
Cavity 0.04 0.06
Cavity 0.01 0.89

P(Cavity) =0.04 + 0.06 =0.1
P(Cavity Tooth) =0.04 + 0.01 +0.06=0.11
P(Cavity | Tooth) = P(Cavity Tooth) / P(Tooth) = 0.04 / 0.05



Inferences

Tooth ~ Tooth

Catch ~ Catch | Catch ~ Catch
Cavity 0.108 0.012 0.072 0.008
~ Cavity |0.016 0.064 0.144 0.576

Probability distributions P(Cavity, Tooth, Catch)

P(Cavity) =0.108 + 0.012 + 0.72 + 0.008 = 0.2

P(Cavity Tooth) =0.108 +0.012 + 0.072 + 0.008 + 0.016
+0.064 = 0.28

P(Cavity | Tooth) = P(Cavity Tooth) / P(Tooth) =

[P(Cavity Tooth Catch) + P(Cavity Tooth ~ Catch)] */
P(Tooth)

12



w Bayesian Networks

Represent dependencies among random variables

Give a short specification of conditional probability
distribution

Many random variables are conditionally independent
Simplifies computations

Graphical representation

DAG — causal relationships among random variables
Allows inferences based on the network structure

13



w 2.1 Definition of Bayesian networks

A BN 1s a DAG 1n which each node 1s annotated with
quantitative probability information, namely:

" Nodes represent random variables (discrete or
continuous)

" Directed links X Y: X has a direct influence on Y, X
1s said to be a parent of Y

® cach node X has an associated conditional probability
table, P(Xi | Parents(Xi)) that quantify the effects of
the parents on the node

Example: Weather, Cavity, Toothache, Catch
" Weather, Cavity  Toothache, Cavity  Catch

14



Bayesian network - example

P(B)
0.001

T

Conditional probability
table

T

B E [P(A)
T T/{0.95
T F|0.94
F T]0.29

0.001
AI PW) A' P(M)

Earthquake PE)
0.002

B ﬂf P(A|B, E)
T F

T 0.95 0.05

T 0.94 0.06

F 029 0.71

F 0.001 0.999

15



| 2.2 Bayesian network semantics

A) Represent a probability distribution

B) Specify conditional independence — build the
network

A) each value of the probability distribution can be
computed as:

P(X1=x1 ... Xn=xn) = P(xl,..., xn) =
i=1,n P(xi | Parents(xi))

where Parents(x1) represent the specific values of
Parents(X1)

16



2.3 Building the network

P(X1=x1 ... Xn=xn)=P(x1,...,xn) =

P(xn | xn-1,..., x1) * P(xn-1,...,x1) = ... =

P(xn | xn-1) * P(xn-1 | xn-2)* ... P(x2|x1) * P(x1) =
i=1,n P(xi | xi-1,..., x1)

* We can see that P(Xi | Xi-1,..., X1) = P(xi | Parents(Xi)) if
Parents(Xi) { Xi-1,..., X1}
* The condition may be satisfied by labeling the nodes in an
order consistent with a DAG

* Intuitively, the parents of a node X1 must be all the nodes
Xi1-1,..., X1 which have a direct influence on Xi.

17



w Building the network - cont

* Pick a set of random variables that describe the problem
* Pick an ordering of those variables

* while there are still variables repeat

(a) choose a variable X1 and add a node associated to Xi

(b) assign Parents(Xi) a minimal set of nodes that already
exists in the network such that the conditional independence
property is satisfied

(c) define the conditional probability table for Xi

* Because each node 1s linked only to previous nodes  DAG

* P(MaryCalls | JohnCals, Alarm, Burglary, Earthquake) =
P(MaryCalls | Alarm)

18



w Compactness of node ordering

* Far more compact than a probability distribution

* Example of locally structured system (or sparse):
ecach component interacts directly only with a limited
number of other components

* Associated usually with a linear growth 1in complexity
rather than with an exponential one

* The order of adding the nodes is important

* The correct order in which to add nodes 1s to add the
“root causes” first, then the variables they influence,
and so on, until we reach the leaves

19



| 2.4 Probabilistic inferences

P(A  V  B)=P(A) * P(V|A) * P(B|V)

R

P(A  V  B)=P(V)*P(A|V) * P(B|V)

P(A V  B)=P(A) * P(B) * P(V|A,B)

20



w Probabilistic inferences

PB) Burglary Earthauake _P(E)
0.001 ki 0.002

P(A)

0.95
0.94
0.29

= - |w
— - |

T
T

0.001
AI PW) A' P(M)
F 005 F 001

P M A B E)=
PJ|A)* P(M|A)*P(A| B E)*P( B) P( E)=
0.9 * 0.7 * 0.001 * 0.999 * 0.998 = 0.00062



| Probabilistic inferences

Py Burglary Earthquake PE)

P(A)
0.95
0.94
0.29

0.001
Al P) A' P(M)
T 0.9 T 0.7
F 0.05 F 0.01

P(A|B) = P(A|B,E) *P(E|B) + P(A| B, E)*
= P(A[B,E) *P(E) + P(A| B, E)*
=0.95 * 0.002 + 0.94 * 0.998 = 0.94002

= - |w
— - |

T
T

22



2.5 Different types of inferences

Burglary Earthquake
Diagnosis inferences (effect  cause) \

P(Burglary | JohnCalls)
Causal inferences (cause  effect)

P(JohnCalls |[Burglary),
P(MaryCalls | Burgalry) ./ -

Intercausal inferences (between cause and common effects)
P(Burglary | Alarm Earthquake)

Mixed inferences
P(Alarm | JohnCalls = Earthquake) diag + causal
P(Burglary | JohnCalls Earthquake)  diag + intercausal

23



ﬁ« 3. Certainty factors

The MY CIN model
Certainty factors / Confidence coefficients (CF)
Heuristic model of uncertain knowledge

In MYCIN — two probabilistic functions to model the
degree of belief and the degree of disbelief in a
hypothesis

" function to measure the degree of belief -
" function to measure the degree of disbelief - MD

MB|h,e] — how much the belief in h increases based
on evidence e

MDJ[h,e] - how much the disbelief in h increases
based on evidence e

24



w 3.1 Belief functions

1 ) daca P(h)=1
MB[h,e]= max(P(hle).P(h)) P(h

max(0,1) P(h)

1n caz contrar

1 ) daca P(h) =0
MD[h,e]= min(P(hle).P(h)) P(h

min(0,1) P(h)

1n caz contrar

" (Certainty factor

CF[h,e]= MB[h,e] MD[h,e]

25



w Belief functions - features

" Jalue range
0 MB[h,e] I 0 MD[he] I 1 CFhe] I

" Ithissure, 1.e. P(hle) =1, then

MB[h,c]= s =1 MD[hc]=0  CFhc]=1
1 P(h)

= [f the negation of h 1s sure, 1.¢. , P(h|e) = 0 then

~

MBh,e]=0 MD[hc]- -1  CF[he]= 1
0 P(h)

26



Example in MYCIN

= if (1) the type of the organism is gram-positive, and
= (2) the morphology of the organism 1s coccus, and
= (3) the growth of the organism is chain

" then there 1s a strong evidence (0.7) that the 1dentity of the
organism 1is streptococcus

Example of facts in MYCIN :

" (identity organism-1 pseudomonas 0.8)
" (1dentity organism-2 e.coli 0.15)

" (morphology organism-2 coccus 1.0)

27



| 3.2 Combining belief functions

(1) Incremental gathering of evidence

¥ The same attribute value, h, is obtained by two separate paths of
inference, with two separate CFs : CF[h,s1] s1 CF[h,s2]

" The two different paths, corresponding to hypotheses sl and s2
may be different braches of the search tree.

" CF|h, s1&s2] = CF|h,s1] + CF[h,s2] — CF[h,s1]*CF|[h,s2]
" (identity organism-1 pseudomonas 0.8)

" (identity organism-1 pseudomonas 0.7)

28



| Combining belief functions

(2) Conjunction of hypothesis

" Applied for computing the CF associated to the
premises of a rule which ahs several conditions

if A=al and B =0bl then ...
WM: (A al hl cfl)(B bl h2 cf2)

* CF[h1&h2, s| = min(CF[hl,s], CF[h2,s])

29



w Combining belief functions

(3) Combining beliefs

" An uncertain value 1s deduced based on a rule which
has as input conditions based on uncertain values (may
be obtained by applying other rules for example).

= Allows the computation of the CF of the fact deduced
by the rule based on the rule’s CF and the CF of the
hypotheses

" CFJs,e] — belief 1n a hypothesis s based on previous
evidence e

" CF[h,s] - CF in hif's 1s sure
" CF’[h,s] = CF[h,s] * CF [s,¢]

30



| Combining belief functions

(3) Combining beliefs — cont

ifA=aland B=bl then C=c¢c1 0.7
ML: (Aal 0.9) (B bl 0.6)

CF(premises) = min(0.9, 0.6) = 0.6
CF (conclusion) = CF(premises) * CF(rule) = 0.6 * 0.7

ML: (C ¢l 0.42)

31



3.3 Limits of CF

" CF of MYCIN assumes that that the hypothesis are
sustained by independent evidence

" An example shows what happens if this condition 1s
violated

A: The sprinkle functioned last night
U: The grass 1s wet in the morning

P: Last night it rained

32



R1: if the sprinkle functioned last night

then there 1s a strong evidence (0.9) that the grass is wet in the morning
R2: if the grass is wet in the morning

then there 1s a strong evidence (0.8) that it rained last night
= CF[U,A]=0.9

= therefore the evidence sprinkle sustains the hypothesis wet grass with
CF=0.9

= CF[P,U]=0.8

= therefore the evidence wet grass sustains the hypothesis rain with CF
=0.8

= CF[PA]=0.8*0.9=0.72

= therefore the evidence sprinkle sustains the hypothesis rain with CF =
0.72

Solutions
33



2

Introducing Bayesian Networks

2.1 Introduction

Having presented both theoretical and practical reasons for artificial intelligence to
use probabilistic reasoning, we now introduce the key computer technology for deal-
ing with probabilities in Al, namely Bayesian networks. Bayesian networks (BNs)
are graphical models for reasoning under uncertainty, where the nodes represent vari-
ables (discrete or continuous) and arcs represent direct connections between them.
These direct connections are often causal connections. In addition, BNs model the
quantitative strength of the connections between variables, allowing probabilistic be-
liefs about them to be updated automatically as new information becomes available.

In this chapter we will describe how Bayesian networks are put together (the
syntax) and how to interpret the information encoded in a network (the semantics).
We will look at how to model a problem with a Bayesian network and the types of
reasoning that can be performed.

2.2 Bayesian network basics

A Bayesian network is a graphical structure that allows us to represent and reason
about an uncertain domain. The nodes in a Bayesian network represent a set of ran-
dom variables, X = Xi,..X;, ...X,, from the domain. A set of directed arcs (or links)
connects pairs of nodes, X; — X;, representing the direct dependencies between vari-
ables. Assuming discrete variables, the strength of the relationship between variables
is quantified by conditional probability distributions associated with each node. The
only constraint on the arcs allowed in a BN is that there must not be any directed cy-
cles: you cannot return to a node simply by following directed arcs. Such networks
are called directed acyclic graphs, or simply dags.

There are a number of steps that a knowledge engineer' must undertake when
building a Bayesian network. At this stage we will present these steps as a sequence;
however it is important to note that in the real-world the process is not so simple. In
Chapter 10 we provide a fuller description of BN knowledge engineering.

1

'Knowledge engineer in the jargon of AT means a practitioner applying Al technology.

29
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Throughout the remainder of this section we will use the following simple medi-
cal diagnosis problem.
Example problem: Lung cancer. A patient has been suffering from shortness of
breath (called dyspnoea) and visits the doctor, worried that he has lung cancer. The
doctor knows that other diseases, such as tuberculosis and bronchitis, are possible
causes, as well as lung cancer. She also knows that other relevant information in-
cludes whether or not the patient is a smoker (increasing the chances of cancer and
bronchitis) and what sort of air pollution he has been exposed to. A positive X-ray
would indicate either TB or lung cancer.”

2.2.1 Nodes and values

First, the knowledge engineer must identify the variables of interest. This involves
answering the question: what are the nodes to represent and what values can they
take, or what state can they be in? For now we will consider only nodes that take dis-
crete values. The values should be both mutually exclusive and exhaustive, which
means that the variable must take on exactly one of these values at a time. Common
types of discrete nodes include:

e Boolean nodes, which represent propositions, taking the binary values true (7)
and false (F). In a medical diagnosis domain, the node Cancer would represent
the proposition that a patient has cancer.

e Ordered values. For example, a node Pollution might represent a patient’s pol-
lution exposure and take the values {low, medium, high}.

o Integral values. For example, a node called Age might represent a patient’s age
and have possible values from 1 to 120.

Even at this early stage, modeling choices are being made. For example, an alter-
native to representing a patient’s exact age might be to clump patients into different
age groups, such as {baby, child, adolescent, young, middleaged, old}. The trick is to
choose values that represent the domain efficiently, but with enough detail to perform
the reasoning required. More on this later!

TABLE 2.1
Preliminary choices of nodes and
values for the lung cancer example.

Node name | Type Values
Pollution | Binary | {low, high}
Smoker Boolean | {7, F}

Cancer Boolean | {7, F}
Dyspnoea | Boolean | {T, F}
X-ray Binary | {pos, neg}

2This is a modified version of the so-called “Asia” problem Lauritzen and Spiegelhalter, 1988, given
in §2.5.3.
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For our example, we will begin with the restricted set of nodes and values shown
in Table 2.1. These choices already limit what can be represented in the network. For
instance, there is no representation of other diseases, such as TB or bronchitis, so the
system will not be able to provide the probability of the patient having them. Another
limitation is a lack of differentiation, for example between a heavy or a light smoker,
and again the model assumes at least some exposure to pollution. Note that all these
nodes have only two values, which keeps the model simple, but in general there is no
limit to the number of discrete values.

2.2.2 Structure

The structure, or topology, of the network should capture qualitative relationships
between variables. In particular, two nodes should be connected directly if one af-
fects or causes the other, with the arc indicating the direction of the effect. So, in our
medical diagnosis example, we might ask what factors affect a patient’s chance of
having cancer? If the answer is “Pollution and smoking,” then we should add arcs
from Pollution and Smoker to Cancer. Similarly, having cancer will affect the pa-
tient’s breathing and the chances of having a positive X-ray result. So we add arcs
from Cancer to Dyspnoea and XRay. The resultant structure is shown in Figure 2.1.
It is important to note that this is just one possible structure for the problem; we look
at alternative network structures in §2.4.3.

P(S=T)
0.30

P(P=L)

0.90 P S| P(C=TIP,S)
H T 0.05
H F 0.02
L T 0.03

Dyspnoea
L F 0.001
P(X=posIC) C | P(D=TIC)
T 0.90 T 0.65
F 0.20 F 0.30

FIGURE 2.1: A BN for the lung cancer problem.

Structure terminology and layout

In talking about network structure it is useful to employ a family metaphor: a node
is a parent of a child, if there is an arc from the former to the latter. Extending the
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metaphor, if there is a directed chain of nodes, one node is an ancestor of another if
it appears earlier in the chain, whereas a node is a descendant of another node if it
comes later in the chain. In our example, the Cancer node has two parents, Pollution
and Smoker, while Smoker is an ancestor of both X-ray and Dyspnoea. Similarly, X-
ray is a child of Cancer and descendant of Smoker and Pollution. The set of parent
nodes of a node X is given by Parents(X).

Another useful concept is that of the Markov blanket of a node, which con-
sists of the node’s parents, its children, and its children’s parents. Other terminology
commonly used comes from the “tree” analogy (even though Bayesian networks in
general are graphs rather than trees): any node without parents is called a root node,
while any node without children is called a leaf node. Any other node (non-leaf and
non-root) is called an intermediate node. Given a causal understanding of the BN
structure, this means that root nodes represent original causes, while leaf nodes rep-
resent final effects. In our cancer example, the causes Pollution and Smoker are root
nodes, while the effects X-ray and Dyspnoea are leaf nodes.

By convention, for easier visual examination of BN structure, networks are usu-
ally laid out so that the arcs generally point from top to bottom. This means that the
BN “tree” is usually depicted upside down, with roots at the top and leaves at the
bottom !

2.2.3 Conditional probabilities

Once the topology of the BN is specified, the next step is to quantify the relationships
between connected nodes — this is done by specifying a conditional probability dis-
tribution for each node. As we are only considering discrete variables at this stage,
this takes the form of a conditional probability table (CPT).

First, for each node we need to look at all the possible combinations of values of
those parent nodes. Each such combination is called an instantiation of the parent
set. For each distinct instantiation of parent node values, we need to specify the
probability that the child will take each of its values.

For example, consider the Cancer node of Figure 2.1. Its parents are Pollution
and Smoking and take the possible joint values {< H,T >,< H,F > < L,T >,
< L,F >}. The conditional probability table specifies in order the probability of
cancer for each of these cases to be: < 0.05,0.02,0.03,0.001 >. Since these are
probabilities, and must sum to one over all possible states of the Cancer variable,
the probability of no cancer is already implicitly given as one minus the above prob-
abilities in each case; i.e., the probability of no cancer in the four possible parent
instantiations is < 0.95,0.98,0.97,0.999 >.

Root nodes also have an associated CPT, although it is degenerate, containing
only one row representing its prior probabilities. In our example, the prior for a pa-
tient being a smoker is given as 0.3, indicating that 30% of the population that the

30ddly, this is the antipodean standard in computer science; we’ll let you decide what that may mean
about computer scientists!



Introducing Bayesian Networks 33

doctor sees are smokers, while 90% of the population are exposed to only low levels
of pollution.

Clearly, if a node has many parents or if the parents can take a large number of
values, the CPT can get very large! The size of the CPT is, in fact, exponential in the
number of parents. Thus, for Boolean networks a variable with n parents requires a
CPT with 2"*! probabilities.

2.2.4 The Markov property

In general, modeling with Bayesian networks requires the assumption of the Markov
property: there are no direct dependencies in the system being modeled which are
not already explicitly shown via arcs. In our Cancer case, for example, there is no
way for smoking to influence dyspnoea except by way of causing cancer (or not) —
there is no hidden “backdoor” from smoking to dyspnoea. Bayesian networks which
have the Markov property are also called Independence-maps (or, I-maps for short),
since every independence suggested by the lack of an arc is real in the system.

Whereas the independencies suggested by a lack of arcs are generally required to
exist in the system being modeled, it is not generally required that the arcs in a BN
correspond to real dependencies in the system. The CPTs may be parameterized in
such a way as to nullify any dependence. Thus, for example, every fully-connected
Bayesian network can represent, perhaps in a wasteful fashion, any joint probability
distribution over the variables being modeled. Of course, we shall prefer minimal
models and, in particular, minimal I-maps, which are I-maps such that the deletion
of any arc violates I-mapness by implying a non-existent independence in the system.

If, in fact, every arc in a BN happens to correspond to a direct dependence in the
system, then the BN is said to be a Dependence-map (or, D-map for short). A BN
which is both an [-map and a D-map is said to be a perfect map.

2.3 Reasoning with Bayesian networks

Now that we know how a domain and its uncertainty may be represented in a Bayes-
ian network, we will look at how to use the Bayesian network to reason about the
domain. In particular, when we observe the value of some variable, we would like to
condition upon the new information. The process of conditioning (also called prob-
ability propagation or inference or belief updating) is performed via a “flow of
information” through the network. Note that this information flow is not limited to
the directions of the arcs. In our probabilistic system, this becomes the task of com-
puting the posterior probability distribution for a set of query nodes, given values
for some evidence (or observation) nodes.
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2.3.1 Types of reasoning

Bayesian networks provide full representations of probability distributions over their
variables. That implies that they can be conditioned upon any subset of their vari-
ables, supporting any direction of reasoning.

For example, one can perform diagnostic reasoning, i.e., reasoning from symp-
toms to cause, such as when a doctor observes Dyspnoea and then updates his belief
about Cancer and whether the patient is a Smoker. Note that this reasoning occurs in
the opposite direction to the network arcs.

Or again, one can perform predictive reasoning, reasoning from new informa-
tion about causes to new beliefs about effects, following the directions of the network
arcs. For example, the patient may tell his physician that he is a smoker; even before
any symptoms have been assessed, the physician knows this will increase the chances
of the patient having cancer. It will also change the physician’s expectations that the
patient will exhibit other symptoms, such as shortness of breath or having a positive
X-ray result.
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FIGURE 2.2: Types of reasoning.

A further form of reasoning involves reasoning about the mutual causes of a
common effect; this has been called intercausal reasoning. A particular type called
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explaining away is of some interest. Suppose that there are exactly two possible
causes of a particular effect, represented by a v-structure in the BN. This situation
occurs in our model of Figure 2.1 with the causes Smoker and Pollution which have
a common effect, Cancer (of course, reality is more complex than our example!).
Initially, according to the model, these two causes are independent of each other;
that is, a patient smoking (or not) does not change the probability of the patient being
subject to pollution. Suppose, however, that we learn that Mr. Smith has cancer. This
will raise our probability for both possible causes of cancer, increasing the chances
both that he is a smoker and that he has been exposed to pollution. Suppose then
that we discover that he is a smoker. This new information explains the observed
cancer, which in turn lowers the probability that he has been exposed to high levels of
pollution. So, even though the two causes are initially independent, with knowledge
of the effect the presence of one explanatory cause renders an alternative cause less
likely. In other words, the alternative cause has been explained away.

Since any nodes may be query nodes and any may be evidence nodes, sometimes
the reasoning does not fit neatly into one of the types described above. Indeed, we
can combine the above types of reasoning in any way. Figure 2.2 shows the different
varieties of reasoning using the Cancer BN. Note that the last combination shows the
simultaneous use of diagnostic and predictive reasoning.

2.3.2 Types of evidence

So Bayesian networks can be used for calculating new beliefs when new information
— which we have been calling evidence — is available. In our examples to date, we
have considered evidence as a definite finding that a node X has a particular value,
x, which we write as X = x. This is sometimes referred to as specific evidence.
For example, suppose we discover the patient is a smoker, then Smoker=T, which is
specific evidence.

However, sometimes evidence is available that is not so definite. The evidence
might be that a node Y has the value y; or y, (implying that all other values are
impossible). Or the evidence might be that Y is not in state y; (but may take any of
its other values); this is sometimes called a negative evidence.

In fact, the new information might simply be any new probability distribution
over Y. Suppose, for example, that the radiologist who has taken and analyzed the X-
ray in our cancer example is uncertain. He thinks that the X-ray looks positive, but is
only 80% sure. Such information can be incorporated equivalently to Jeffrey condi-
tionalization of §1.5.1, in which case it would correspond to adopting a new posterior
distribution for the node in question. In Bayesian networks this is also known as vir-
tual evidence. Since it is handled via likelihood information, it is also known as
likelihood evidence. We defer further discussion of virtual evidence until Chapter 3,
where we can explain it through the effect on belief updating.
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2.3.3 Reasoning with numbers

Now that we have described qualitatively the types of reasoning that are possible
using BNs, and types of evidence, let’s look at the actual numbers. Even before we
obtain any evidence, we can compute a prior belief for the value of each node; this
is the node’s prior probability distribution. We will use the notation Bel(X) for the
posterior probability distribution over a variable X, to distinguish it from the prior
and conditional probability distributions (i.e., P(X), P(X|Y)).

The exact numbers for the updated beliefs for each of the reasoning cases de-
scribed above are given in Table 2.2. The first set are for the priors and conditional
probabilities originally specified in Figure 2.1. The second set of numbers shows
what happens if the smoking rate in the population increases from 30% to 50%,
as represented by a change in the prior for the Smoker node. Note that, since the
two cases differ only in the prior probability of smoking (P(S = T') = 0.3 versus
P(S =T) = 0.5), when the evidence itself is about the patient being a smoker, then
the prior becomes irrelevant and both networks give the same numbers.

TABLE 2.2
Updated beliefs given new information with smoking rate 0.3 (top set) and 0.5
(bottom set).

Node No Reasoning Case
P(5)=0.3 Evidence | Diagnostic | Predictive | Intercausal | Combined
D=T S=T | C=T| C=T D=T
S=T S=T
Bel(P=high) 0.100 0.102 0.100 | 0.249 | 0.156 0.102
Bel(S=T) 0.300 0.307 1|0.825 1 1
Bel(C=T) 0.011 0.025 0.032 1 1 0.067
Bel(X=pos) 0.208 0.217 0.222 | 0.900 | 0.900 0.247
Bel(D=T) 0.304 1 0.311 | 0.650 | 0.650 1
P(S)=0.5
Bel(P=high) 0.100 0.102 0.100 | 0.201 | 0.156 0.102
Bel(S=T) 0.500 0.508 10917 1 1
Bel(C=T) 0.174 0.037 0.032 1 1 0.067
Bel(X=pos) 0.212 0.226 0.311 | 0.900 | 0.900 0.247
Bel(D=T) 0.306 1 0.222 | 0.650 | 0.650 1

Belief updating can be done using a number of exact and approximate inference
algorithms. We give details of these algorithms in Chapter 3, with particular emphasis
on how choosing different algorithms can affect the efficiency of both the knowledge
engineering process and the automated reasoning in the deployed system. However,
most existing BN software packages use essentially the same algorithm and it is quite
possible to build and use BNs without knowing the details of the belief updating al-
gorithms.
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2.4 Understanding Bayesian networks

We now consider how to interpret the information encoded in a BN — the proba-
bilistic semantics of Bayesian networks.

2.4.1 Representing the joint probability distribution

Most commonly, BNs are considered to be representations of joint probability distri-
butions. There is a fundamental assumption that there is a useful underlying structure
to the problem being modeled that can be captured with a BN, i.e., that not every
node is connected to every other node. If such domain structure exists, a BN gives
a more compact representation than simply describing the probability of every joint
instantiation of all variables. Sparse Bayesian networks (those with relatively few
arcs, which means few parents for each node) represent probability distributions in a
computationally tractable way.

Consider a BN containing the n nodes, X to X,,, taken in that order. A particular
value in the joint distribution is represented by P(X; = x1,Xs = x2,...,Xy = Xy), OF
more compactly, P(x,x3,...,%,). The chain rule of probability theory allows us to
factorize joint probabilities so:

P(x1,x0,...,%,) = P(x1) X P(xalx1) ..., xP(xg|x1,. .. x0—1)

= HP(xi|x],...,x,~,1) (2.1)

i

Recalling from §2.2.4 that the structure of a BN implies that the value of a particular
node is conditional only on the values of its parent nodes, this reduces to

P(x1,X%2,...,X%,) = HP(x,~|Parents(X,~))
i

provided Parents(X;) C {Xy,...,X;_1}. For example, by examining Figure 2.1, we
can simplify its joint probability expressions. E.g.,

P(X=posA\D=TANC=TAP=IlowANS=F)
= P(X=posiD=T,C=T,P=Ilow,S=F)
xP(D=T|C=T,P=low,S=F)
XP(C =T|P = low,S = F)P(P = low|S = F)P(S = F)
= P(X = pos|C =T)P(D =T|C =T)P(C=T|P = low,S = F)
XP(P=Ilow)P(S=F)

2.4.2 Pearl’s network construction algorithm

The condition that Parents(X;) C {X,...,X;—1} allows us to construct a network
from a given ordering of nodes using Pearl’s network construction algorithm (1988,
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section 3.3). Furthermore, the resultant network will be a unique minimal I-map,
assuming the probability distribution is positive. The construction algorithm (Algo-
rithm 2.1) simply processes each node in order, adding it to the existing network and
adding arcs from a minimal set of parents such that the parent set renders the current
node conditionally independent of every other node preceding it.

Algorithm 2.1 Pearl’s Network Construction Algorithm

1. Choose the set of relevant variables {X;} that describe the domain.
2. Choose an ordering for the variables, < X,..., X, >.
3. While there are variables left:

(a) Add the next variable X; to the network.

(b) Add arcs to the X; node from some minimal set of nodes already in the net,
Parents(X;), such that the following conditional independence property
is satisfied:

P(Xi|X{,...,X,,) = P(X;|Parents(X;))

where X1, ...,X,, are all the variables preceding X;.
(c) Define the CPT for X;.

2.4.3 Compactness and node ordering

Using this construction algorithm, it is clear that a different node order may result
in a different network structure, with both nevertheless representing the same joint
probability distribution.

In our example, several different orderings will give the original network struc-
ture: Pollution and Smoker must be added first, but in either order, then Cancer, and
then Dyspnoea and X-ray, again in either order.

On the other hand, if we add the symptoms first, we will get a markedly different
network. Consider the order < D,X,C,P,S >. D is now the new root node. When
adding X, we must consider “Is X-ray independent of Dyspnoea?” Since they have
a common cause in Cancer, they will be dependent: learning the presence of one
symptom, for example, raises the probability of the other being present. Hence, we
have to add an arc from D to X. When adding Cancer, we note that Cancer is di-
rectly dependent upon both Dyspnoea and X-ray, so we must add arcs from both.
For Pollution, an arc is required from C to P to carry the direct dependency. When
the final node, Smoker, is added, not only is an arc required from C to S, but another
from P to S. In our story S and P are independent, but in the new network, without
this final arc, P and S are made dependent by having a common cause, so that ef-
fect must be counterbalanced by an additional arc. The result is two additional arcs
and three new probability values associated with them, as shown in Figure 2.3(a).
Given the order < D, X, P, S,C >, we get Figure 2.3(b), which is fully connected and
requires as many CPT entries as a brute force specification of the full joint distri-
bution! In such cases, the use of Bayesian networks offers no representational, or
computational, advantage.
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FIGURE 2.3: Alternative structures obtained using Pearl’s network construction al-
gorithm with orderings: (a) < D,X,C,P,S >; (b) < D,X,P,S,C >.

It is desirable to build the most compact BN possible, for three reasons. First,
the more compact the model, the more tractable it is. It will have fewer probability
values requiring specification; it will occupy less computer memory; probability up-
dates will be more computationally efficient. Second, overly dense networks fail to
represent independencies explicitly. And third, overly dense networks fail to repre-
sent the causal dependencies in the domain. We will discuss these last two points just
below.

We can see from the examples that the compactness of the BN depends on getting
the node ordering “right.” The optimal order is to add the root causes first, then
the variable(s) they influence directly, and continue until leaves are reached.* To
understand why, we need to consider the relation between probabilistic and causal
dependence.

2.4.4 Conditional independence

Bayesian networks which satisfy the Markov property (and so are I-maps) explicitly
express conditional independencies in probability distributions. The relation between
conditional independence and Bayesian network structure is important for under-
standing how BNs work.

2.4.4.1 Causal chains

Consider a causal chain of three nodes, where A causes B which in turn causes C, as
shown in Figure 2.4(a). In our medical diagnosis example, one such causal chain is
“smoking causes cancer which causes dyspnoea.” Causal chains give rise to condi-

40f course, one may not know the causal order of variables. In that case the automated discovery
methods discussed in Part II may be helpful.



40 Bayesian Artificial Intelligence, Second Edition

tional independence, such as for Figure 2.4(a):

P(C|AAB) = P(C|B)

This means that the probability of C, given B, is exactly the same as the probability
of C, given both B and A. Knowing that A has occurred doesn’t make any difference
to our beliefs about C if we already know that B has occurred. We also write this
conditional independence as: AL C|B.

In Figure 2.1(a), the probability that someone has dyspnoea depends directly only
on whether they have cancer. If we don’t know whether some woman has cancer, but
we do find out she is a smoker, that would increase our belief both that she has
cancer and that she suffers from shortness of breath. However, if we already knew
she had cancer, then her smoking wouldn’t make any difference to the probability of
dyspnoea. That is, dyspnoea is conditionally independent of being a smoker given
the patient has cancer.

@0 o g

(@) (b) (©)

FIGURE 2.4: (a) Causal chain; (b) common cause; (c) common effect.

2.4.4.2 Common causes

Two variables A and C having a common cause B is represented in Figure 2.4(b).
In our example, cancer is a common cause of the two symptoms, a positive X-ray
result and dyspnoea. Common causes (or common ancestors) give rise to the same
conditional independence structure as chains:

P(C|AAB) = P(C|B) = AILC|B

If there is no evidence or information about cancer, then learning that one symptom is
present will increase the chances of cancer which in turn will increase the probability
of the other symptom. However, if we already know about cancer, then an additional
positive X-ray won’t tell us anything new about the chances of dyspnoea.

2.4.4.3 Common effects

A common effect is represented by a network v-structure, as in Figure 2.4(c). This
represents the situation where a node (the effect) has two causes. Common effects
(or their descendants) produce the exact opposite conditional independence structure



Introducing Bayesian Networks 41

to that of chains and common causes. That is, the parents are marginally independent
(A_LC), but become dependent given information about the common effect (i.e., they
are conditionally dependent):

P(A|CAB) # P(A|B) = AJLC|B

Thus, if we observe the effect (e.g., cancer), and then, say, we find out that one of
the causes is absent (e.g., the patient does not smoke), this raises the probability of
the other cause (e.g., that he lives in a polluted area) — which is just the inverse of
explaining away.

Compactness again

So we can now see why building networks with an order violating causal order can,
and generally will, lead to additional complexity in the form of extra arcs. Consider
just the subnetwork { Pollution, Smoker, Cancer } of Figure 2.1. If we build the sub-
network in that order we get the simple v-structure Pollution — Smoker «+— Cancer.
However, if we build it in the order < Cancer, Pollution, Smoker >, we will first get
Cancer — Pollution, because they are dependent. When we add Smoker, it will be
dependent upon Cancer, because in reality there is a direct dependency there. But
we shall also have to add a spurious arc to Pollution, because otherwise Cancer will
act as a common cause, inducing a spurious dependency between Smoker and Pollu-
tion; the extra arc is necessary to reestablish marginal independence between the two.

2.4.5 d-separation

We have seen how Bayesian networks represent conditional independencies and how
these independencies affect belief change during updating. The conditional indepen-
dence in AL C|B means that knowing the value of B blocks information about C
being relevant to A, and vice versa. Or, in the case of Figure 2.4(c), lack of informa-
tion about B blocks the relevance of C to A, whereas learning about B activates the
relation between C and A.

These concepts apply not only between pairs of nodes, but also between sets of
nodes. More generally, given the Markov property, it is possible to determine whe-
ther a set of nodes X is independent of another set Y, given a set of evidence nodes
E. To do this, we introduce the notion of d-separation (from direction-dependent
separation).

Definition 2.1 Path (Undirected Path) A path between two sets of nodes X and Y
is any sequence of nodes between a member of X and a member of Y such that
every adjacent pair of nodes is connected by an arc (regardless of direction) and no
node appears in the sequence twice.
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Definition 2.2 Blocked path A path is blocked, given a set of nodes E, if there is a
node Z on the path for which at least one of three conditions holds:

1. Zisin E and Z has one arc on the path leading in and one arc out (chain).
2. Zis in E and Z has both path arcs leading out (common cause).

3. Neither Z nor any descendant of Z is in E, and both path arcs lead in to Z
(common effect).

Definition 2.3 d-separation A sef of nodes E d-separates two other sets of nodes X
andY (X LY | E) if every path from a node in X to a node in'Y is blocked given E.

If X and Y are d-separated by E, then X and Y are conditionally independent
given E (given the Markov property). Examples of these three blocking situations
are shown in Figure 2.5. Note that we have simplified by using single nodes rather
than sets of nodes; also note that the evidence nodes E are shaded.

O

FIGURE 2.5: Examples of the three types of situations in which the path from X to
Y can be blocked, given evidence E. In each case, X and Y are d-separated by E.

Consider d-separation in our cancer diagnosis example of Figure 2.1. Suppose an
observation of the Cancer node is our evidence. Then:

1. P is d-separated from X and D. Likewise, S is d-separated from X and D
(blocking condition 1).

2. While X is d-separated from D (condition 2).

3. However, if C had not been observed (and also not X or D), then S would have
been d-separated from P (condition 3).

Definition 2.4 d-connection Sets X and Y are d-connected given setE (X LY | E)
if there is a path from a node in X to a node in'Y which is not blocked given E.
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2.5 More examples

In this section we present further simple examples of BN modeling from the liter-
ature. We encourage the reader to work through these examples using BN software
(see Appendix B).

2.5.1 Earthquake

Example statement: You have a new burglar alarm installed. It reliably detects
burglary, but also responds to minor earthquakes. Two neighbors, John and Mary,
promise to call the police when they hear the alarm. John always calls when he
hears the alarm, but sometimes confuses the alarm with the phone ringing and calls
then also. On the other hand, Mary likes loud music and sometimes doesn’t hear the
alarm. Given evidence about who has and hasn’t called, you’d like to estimate the
probability of a burglary (from Pearl (1988)).

A BN representation of this example is shown in Figure 2.6. All the nodes in
this BN are Boolean, representing the true/false alternatives for the corresponding
propositions. This BN models the assumptions that John and Mary do not perceive
a burglary directly and they do not feel minor earthquakes. There is no explicit rep-
resentation of loud music preventing Mary from hearing the alarm, nor of John’s
confusion of alarms and telephones; this information is summarized in the probabil-
ities in the arcs from Alarm to JohnCalls and MaryCalls.

P(E=T)
Burglary Earthquake 0.02

P(B=T)

001 @ B E | P(A=TIB.E)
T T| 095
T F| 094
F T| 029

A PO=TIA) A | PV=TIA)

T| 090 T| 070

F| 005 F| 001

FIGURE 2.6: Pearl’s Earthquake BN.
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2.5.2 Metastatic cancer

Example statement: Metastatic cancer is a possible cause of brain tumors and is
also an explanation for increased total serum calcium. In turn, either of these could
explain a patient falling into a coma. Severe headache is also associated with brain
tumors. (This example has a long history in the literature, namely Cooper, 1984,
Pearl, 1988, Spiegelhalter, 1986.)

A BN representation of this metastatic cancer example is shown in Figure 2.7.
All the nodes are Booleans. Note that this is a graph, not a tree, in that there is more
than one path between the two nodes M and C (via S and B).

PM=T) =0.2

M| P(S=TIM)  Metastatic Cancer

T 0.80 | M| P(B=TIM
F 0.20 Brain tumour| T 0.20
Increased tota F 0.05
serum calcium
S B | P(C=TIS,B @ Severe Headaches
TT 0.80 | Coma
B | P(H=TIB)
T F 0.80
T 0.80
F T 0.80
F 0.60
F F 0.05

FIGURE 2.7: Metastatic cancer BN.

2.5.3 Asia

Example Statement: Suppose that we wanted to expand our original medical di-
agnosis example to represent explicitly some other possible causes of shortness of
breath, namely tuberculosis and bronchitis. Suppose also that whether the patient
has recently visited Asia is also relevant, since TB is more prevalent there.

Two alternative BN structures for the so-called Asia example are shown in Fig-
ure 2.8. In both networks all the nodes are Boolean. The left-hand network is based
on the Asia network of Lauritzen and Spiegelhalter (1988). Note the slightly odd
intermediate node TBorC, indicating that the patient has either tuberculosis or bron-
chitis. This node is not strictly necessary; however it reduces the number of arcs
elsewhere, by summarizing the similarities between TB and lung cancer in terms of
their relationship to positive X-ray results and dyspnoea. Without this node, as can
be seen on the right, there are two parents for X-ray and three for Dyspnoea, with the
same probabilities repeated in different parts of the CPT. The use of such an inter-
mediate node is an example of “divorcing,” a model structuring method described in
§10.3.6.
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FIGURE 2.8: Alternative BNs for the “Asia” example.

2.6 Summary

Bayes’ theorem allows us to update the probabilities of variables whose state has not
been observed given some set of new observations. Bayesian networks automate this
process, allowing reasoning to proceed in any direction across the network of vari-
ables. They do this by combining qualitative information about direct dependencies
(perhaps causal relations) in arcs and quantitative information about the strengths
of those dependencies in conditional probability distributions. Computational speed
gains in updating accrue when the network is sparse, allowing d-separation to take
advantage of conditional independencies in the domain (so long as the Markov prop-
erty holds). Given a known set of conditional independencies, Pearl’s network con-
struction algorithm guarantees the development of a minimal network, without re-
dundant arcs. In the next chapter, we turn to specifics about the algorithms used to
update Bayesian networks.

2.7 Bibliographic notes

The text that marked the new era of Bayesian methods in artificial intelligence is
Judea Pearl’s Probabilistic Reasoning in Intelligent Systems (1988). This text played
no small part in attracting the authors to the field, amongst many others. Richard
Neapolitan’s Probabilistic Reasoning in Expert Systems (1990) complements Pearl’s
book nicely, and it lays out the algorithms underlying the technology particularly
well. Two more current introductions are Jensen and Nielsen’s Bayesian Networks
and Decision Graphs (2007), Kjerulff and Madsen’s Bayesian Networks and Influ-
ence Diagrams: A Guide to Construction and Analysis (2008); both their level and
treatment is similar to ours; however, they do not go as far with the machine learning
and knowledge engineering issues we treat later. More technical discussions can be
found in Cowell et al.’s Probabilistic Networks and Expert Systems (1999), Richard
Neapolitan’s Learning Bayesian Networks (2003) and Koller and Friedman’s Proba-
bilistic Graphical Models: Principles and Techniques (2009).
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A Quick Guide to Using Bayesial.ab

Installation: Web Site www .bayesia.com. Download Bayesial.ab zip file which
is available for all platforms that support the Sun Java Runtime Envi-
ronment (JRE) (Windows, Mac OS X, and Linux). This gives you a
BayesiaLab.zip. Extract the contents of the zip file, to your computer’s
file system. The Sun Java Runtime environment is required to run Bayesialab.
The Sun JRE can be downloaded from the Sun Java Web site: java.com To
run BayesialLab, navigate to the installation directory on the command line,
and run java -Xmsl128M -Xmx512M -jar Bayesialab. jar

Network Files: BNs are stored in . xb1 files, with icon | "1 BayesialLab comes with
a Graphs folder of example networks. To open an existing network, select

~/ or select Network—Open menu option.
Evidence: Evidence can only be added and removed in “Validation Mode”. To enter
this mode either click on the =" icon or click View—Validation Mode
in the main menu.

To add evidence:

1. Double-click on the node for which you want to add evidence.
2. A “monitor” for the node will appear in the list in the right-hand portion

of the BayesiaLab window. In the node’s monitor, double-click on the
variable, for which you would like to add evidence.

To remove evidence:
e In the node’s monitor, double-click on the variable, for which you would
like to remove evidence; or

e Click on \'\‘3\ to remove all evidence (called ‘“observations” in
BayesialLab).
Editing/Creating a BN: BNs can only be created or edited in “Modeling Mode”.

To enter this mode either click on the ‘k‘o icon or click View—Modeling
Mode in the main menu. Note that Bayesialab beliefs are given out of 100,
not as direct probabilities (i.e. not numbers between 0 and 1).

e Add a node by selecting o and then left-clicking, onto the canvas
where you want to place the node.
e Add an arc by selecting " | then dragging the arc from the parent node

to the child node.
e Double click on node, then click on the Probability

Distribution tab to bring up the CPT. Entries can be added
or changed by clicking on the particular cells.

Saving a BN: Select LE'J or the Network—Save menu option.

FIGURE 2.9: A quick guide to using BayesiaL.ab.
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A Quick Guide to Using GeNIe

Installation: Web Site www.genie.sis.pitt .edu. Download GeNle which is
available for Windows. This gives you a genie2_setup.exe, an installer
executable. Double-clicking the executable, will start the installation wizard.

Network Files: BNs are stored in . xds1 files, with icon ‘E] GeNIe comes with an
Examples folder of example networks. To open an existing network, select

Su
= or select File—Open Network menu option, or double-click on the

file.
Compilation: Once a GeNIle BN has been opened, before you can see the initial

beliefs, you must first compile it:

e Click on ‘5} ; or
o Select Network—Update Beliefs menu option.

Once the network is compiled, you can view the state of each node by hovering

over the node’s tick icon (), with your mouse.
Evidence: To add evidence:

e Left click on the node, and select Node—Set Evidence in GeNle’s

menu system; or
e Right click on the node, and select Set Evidence in the right-click

menu

To remove evidence:

e Right click on the node and select Clear Evidence;or
e Select Network—Clear All Evidence menu-option.

There is an option (Network—Update Immediately) to automatically

recompile and update beliefs when new evidence is set.
Editing/Creating a BN: Double-clicking on a node will bring up a window showing

node features.

e Add a node by selecting © and then “drag-and-drop” with the mouse,
onto the canvas, or right-clicking on the canvas and then selecting
Insert Here—Chance from the menu.

e Add an arc by selecting ,’ , then left-click first on the parent node, then
the child node.

e Double click on node, then click on the Definition tab to bring up
the CPT. Entries can be added or changed by clicking on the particular
cells.

Saving a BN: Select E or the File—Save menu option.

FIGURE 2.10: A quick guide to using GeNlIe.
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A Quick Guide to Using Hugin

Installation: Web Site www . hugin . com. Download Hugin Lite, which is available
for MS Windows (95 / 98 / NT4 / 2000 / XP), Solaris Sparc, Solaris X86
and Linux. This gives you HuginLite63.exe, a self-extracting zip archive.
Double-clicking will start the extraction process.

Network Files: BNs are stored in .net files, with icon . Hugin comes with a
samples folder of example networks. To open an existing network, select
ﬁ', or select File—Open menu option, or double-click on the file.

Compilation: Once a Hugin BN has been opened, before you can see the initial
beliefs or add evidence, you must first compile it (which they call “switch

to run mode”): click on ﬁ', or select Network—Run(in edit mode), or
Recompile (in run mode) menu option.

This causes another window to appear on the left side of the display (called
the Node Pane List), showing the network name, and all the node names.
You can display/hide the states and beliefs in several ways. You can select
a particular node by clicking on the ‘+’ by the node name, or all nodes with

)
View—Expand Node List, or using icon 2. Unselecting is done simi-
)
larly with ‘-, or View—Collapse Node List, or using icon ==
Selecting a node means all its states will be displayed, together with a bar and
numbers showing the beliefs. Note that Hugin beliefs are given as percentages
out of 100, not as direct probabilities (i.e., not numbers between 0 and 1).
Editing/Creating a BN: You can only change a BN when you are in “edit” mode,
which you can enter by selecting the edit mode icon ﬁ or selecting
Network—Edit. Double-clicking on a node will bring up a window show-

. . )
ing node features, or use icon L=,

e Add a node by selecting either == (for discrete node) or

= (for continuous node), Edit—Discrete Chance Tool or
Edit—Continuous Chance Tool. In each case, you then “drag-
and-drop” with the mouse.
e Add an arc by selecting either EF:', or Edit—Link Tool, then left-
click first on the parent node, then the child node.
e Click on the E, icon to split the window horizontally between a Tables
Pane (above), showing the CPT of the currently selected node, and the
network structure (below).
Saving a BN: Select ﬁ:’, or the File—Save menu option. Note that the Hugin Lite
demonstration version limits you to networks with up to 50 nodes and learn

from maximum 500 cases; for larger networks, you need to buy a license.
Junction trees: To change the triangulation method select Network—Network

Properties—Compilation, then turn on “Specify
Triangulation Method.” To view, select the Show Junction
Tree option.

FIGURE 2.11: A quick guide to using Hugin.
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A Quick Guide to Using Netica

Installation: Web Site www.norsys.com. Download Netica, which is available
for MS Windows (95 /98 / NT4 /2000 / XP / Vista), and MaclIntosh OSX. This
gives you Netica_Win.exe, a self-extracting zip archive. Double-clicking
will start the extraction process.

Network Files: BNs are stored in . dne files, with icon u Netica comes with a
folder of example networks, plus a folder of tutorial examples. To open an
existing network:

=]
e Select
e Select File—Open menu option; or

e Double-click on the BN . dne file.
Compilation: Once a Netica BN has been opened, before you can see the initial
beliefs or add evidence, you must first compile it:

3]
e Click on ; or
e Select Network—Compile menu option.

Once the network is compiled, numbers and bars will appear for each node
state. Note that Netica beliefs are given out of 100, not as direct probabilities

(i.e., not numbers between 0 and 1).
Evidence: To add evidence:

e Left-click on the node state name; or
e Right-click on node and select particular state name.

To remove evidence:
o Right-click on node and select unknown; or
e Select E ; or
e Select Network—Remove findings menu option.
There is an option (Network—Automatic Update) to automatically re-

compile and update beliefs when new evidence is set.
Editing/Creating a BN: Double-clicking on a node will bring up a window showing
node features.

e Add a node by selecting either @l; or Modify—Add nature
node, then “drag-and-drop” with the mouse.

e Add an arc by selecting either ; or Modify—Add 1link, then left-

click first on the parent node, then the child node.
e Double-click on node, then click on the Table button to bring up the

CPT. Entries can be added or changed by clicking on the particular cells.

Saving a BN: Select E or the File—Save menu option. Note that the Netica
Demonstration version only allows you to save networks with up to 15 nodes.
For larger networks, you need to buy a license.

FIGURE 2.12: A quick guide to using Netica.
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2.8 Problems
Modeling

These modeling exercises should be done using a BN software package (see our
Quick Guides to Using Netica in Figure 2.12, Hugin in Figure 2.11, GeNle in
Figure 2.10, or BayesialLab in Figure 2.9, and also Appendix B).

Also note that various information, including Bayesian network examples in Net-
ica’s .dne format, can be found at the book Web site:

http://www.csse.monash.edu.au/bai

Problem 1

Construct a network in which explaining away operates, for example, incorporating
multiple diseases sharing a symptom. Operate and demonstrate the effect of explain-
ing away. Must one cause explain away the other? Or, can the network be parameter-
ized so that this doesn’t happen?

Problem 2

“Fred’s LISP dilemma.” Fred is debugging a LISP program. He just typed an ex-
pression to the LISP interpreter and now it will not respond to any further typing.
He can’t see the visual prompt that usually indicates the interpreter is waiting for
further input. As far as Fred knows, there are only two situations that could cause
the LISP interpreter to stop running: (1) there are problems with the computer hard-
ware; (2) there is a bug in Fred’s code. Fred is also running an editor in which he is
writing and editing his LISP code; if the hardware is functioning properly, then the
text editor should still be running. And if the editor is running, the editor’s cursor
should be flashing. Additional information is that the hardware is pretty reliable, and
is OK about 99% of the time, whereas Fred’s LISP code is often buggy, say 40% of
the time.

1. Construct a Belief Network to represent and draw inferences about Fred’s
dilemma.

First decide what your domain variables are; these will be your network nodes.
Hint: 5 or 6 Boolean variables should be sufficient. Then decide what the
causal relationships are between the domain variables and add directed arcs
in the network from cause to effect. Finanly, you have to add the conditional
probabilities for nodes that have parents, and the prior probabilities for nodes
without parents. Use the information about the hardware reliability and how
often Fred’s code is buggy. Other probabilities haven’t been given to you ex-
plicitly; choose values that seem reasonable and explain why in your docu-
mentation.

5Based on an example used in Dean, T., Allen, J. and Aloimonos, Y. Artificial Intelligence Theory
and Practice (Chapter 8), Benjamin/Cumming Publishers, Redwood City, CA. 1995.
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2. Show the belief of each variable before adding any evidence, i.e., about the
LISP visual prompt not being displayed.

3. Add the evidence about the LISP visual prompt not being displayed. After
doing belief updating on the network, what is Fred’s belief that he has a bug in
his code?

4. Suppose that Fred checks the screen and the editor’s cursor is still flashing.
What effect does this have on his belief that the LISP interpreter is misbehav-
ing because of a bug in his code? Explain the change in terms of diagnostic
and predictive reasoning.

Problem 3

“A Lecturer’s Life.” Dr. Ann Nicholson spends 60% of her work time in her office.
The rest of her work time is spent elsewhere. When Ann is in her office, half the time
her light is off (when she is trying to hide from students and get research done). When
she is not in her office, she leaves her light on only 5% of the time. 80% of the time
she is in her office, Ann is logged onto the computer. Because she sometimes logs
onto the computer from home, 10% of the time she is not in her office, she is still
logged onto the computer.

1. Construct a Bayesian network to represent the “Lecturer’s Life” scenario just
described.

2. Suppose a student checks Dr. Nicholson’s login status and sees that she is
logged on. What effect does this have on the student’s belief that Dr. Nichol-
son’s light is on?

Problem 4

“Jason the Juggler.” Jason, the robot juggler, drops balls quite often when its battery
is low. In previous trials, it has been determined that when its battery is low it will
drop the ball 9 times out of 10. On the other hand when its battery is not low, the
chance that it drops a ball is much lower, about 1 in 100. The battery was recharged
recently, so there is only a 5% chance that the battery is low. Another robot, Olga
the observer, reports on whether or not Jason has dropped the ball. Unfortunately
Olga’s vision system is somewhat unreliable. Based on information from Olga, the
task is to represent and draw inferences about whether the battery is low depending
on how well Jason is juggling.

1. Construct a Bayesian network to represent the problem.

2. Which probability tables show where the information on how Jason’s success
is related to the battery level, and Olga’s observational accuracy, are encoded
in the network?

Variation of Exercise 19.6 in Nilsson, N.J. Artificial Intelligence: A New Synthesis, Copyright (1998).
With permission from Elsevier.
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3. Suppose that Olga reports that Jason has dropped the ball. What effect does
this have on your belief that the battery is low? What type of reasoning is
being done?

Problem 5

Come up with your own problem involving reasoning with evidence and uncertainty.
Write down a text description of the problem, then model it using a Bayesian net-
work. Make the problem sufficiently complex that your network has at least 8 nodes
and is multiply-connected (i.e., not a tree or a polytree).

1. Show the beliefs for each node in the network before any evidence is added.
2. Which nodes are d-separated with no evidence added?
3. Which nodes in your network would be considered evidence (or observation)

nodes? Which might be considered the query nodes? (Obviously this depends
on the domain and how you might use the network.)

4. Show how the beliefs change in a form of diagnostic reasoning when evi-
dence about at least one of the domain variables is added. Which nodes are
d-separated with this evidence added?

5. Show how the beliefs change in a form of predictive reasoning when evi-
dence about at least one of the domain variables is added. Which nodes are
d-separated with this evidence added?

6. Show how the beliefs change through “explaining away” when particular com-
binations of evidence are added.

7. Show how the beliefs change when you change the priors for a root node
(rather than adding evidence).

Conditional Independence
Problem 6

Consider the following Bayesian network for another version of the medical diag-
nosis example, where B=Bronchitis, S=Smoker, C=Cough, X=Positive X-ray and
L=Lung cancer and all nodes are Booleans.

List the pairs of nodes that are conditionally independent in the following situa-
tions:

1. There is no evidence for any of the nodes.
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2. The cancer node is set to true (and there is no other evidence).
3. The smoker node is set to true (and there is no other evidence).
4. The cough node is set to true (and there is no other evidence).

Variable Ordering
Problem 7

Consider the Bayesian network given for the previous problem.

1. What variable ordering(s) could have been used to produce the above network
using the network construction algorithm (Algorithm 2.1)?

2. Given different variable orderings, what network structure would result from
this algorithm? Use only pen and paper for now! Compare the number of pa-
rameters required by the CPTs for each network.

d-separation
Problem 8
Consider the following graph.

1. Find all the sets of nodes that d-separate X and Y (not including either X or Y
in such sets).

2. Try to come up with a real-world scenario that might be modeled with such a
network structure.

Problem 9

Design an internal representation for a Bayesian network structure; that is, a rep-
resentation for the nodes and arcs of a Bayesian network (but not necessarily the
parameters — prior probabilities and conditional probability tables). Implement a
function which generates such a data structure from the Bayesian network described
by a Netica dne input file. Use this function in the subsequent problems. (Sample
dne files are available from the book Web site.)

Problem 10

Implement the network construction algorithm (Algorithm 2.1). Your program
should take as input an ordered list of variables and prompt for additional input from
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the keyboard about the conditional independence of variables as required. It should
generate a Bayesian network in the internal representation designed above. It should
also print the network in some human-readable form.

Problem 11

Given as input the internal Bayesian network structure N (in the representation you
have designed above), write a function which returns all undirected paths (Definition
2.1) between two sets X and Y of nodes in N.

Test your algorithm on various networks, including at least

e The d-separation network example from Problem 8, dsepEg.dne

® Cancer_Neapolitan.dne

e ALARM.dne

Summarize the results of these experiments.

Problem 12

Given the internal Bayesian network structure N, implement a d-separation oracle
which, for any three sets of nodes input to it, X, Y, and Z, returns:

e trueif X | Y|Z (i.e., Z d-separates X and Y in N);
o falseif X } Y|Z (i.e., X and Y given Z are d-connected in N);

e some diagnostic (a value other than true or false) if an error in N is encoun-
tered.

Run your algorithm on a set of test networks, including at least the three network
specified for Problem 11. Summarize the results of these experiments.

Problem 13

Modify your network construction algorithm from Problem 9 above to use the d-
separation oracle from the last problem, instead of input from the user. Your new
algorithm should produce exactly the same network as that used by the oracle when-
ever the variable ordering provided it is compatible with the oracle’s network. Ex-
periment with different variable orderings. Is it possible to generate a network which
is simpler than the oracle’s network?
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